CHAPTER 1
Introduction to the Microprocessor and Computer

INTRODUCTION

This chapter provides an overview of the Intel family of microprocessors. Included is a discussion of the history
of computers and the function of the microprocessor in the microprocessor-based computer system. Also intro-
duced are terms and jargon used in the computer field, so computerese is understood and applied when dis-
cussing microprocessors and computers. :

The block diagram and a description of the function of each block detail the operation of a computer
system. The chapter also shows how the memory and input/output (I/O) system of the personal computer func-
tion. Finally, the way that data are stored in the memory is provided, so that each data type can be used as soft-
ware is developed. Numeric data are stored as integers, floating-point, and binary-coded decimal (BCD);
alphanumeric data are stored by using the ASCII (American Standard Code for Information Interchange) code.

CHAPTER OBJECTIVES

Upon completion of this chapter, you will be able to:

1. Converse by using appropriate computer terminology such as bit, byte, data, real memory system, expanded
memory system (EMS), extended memory system (XMS), DOS, BIOS, /O, and so forth.

. Briefly detail the history of the computer and list applications performed by computer systems.

Provide an overview of the various 80X86 and Pentium-Pentium pro.

. Convert between binary, decimal, and hexadecimal numbers.

Differentiate and represent numeric and alphabetic information as integers, floating-point, BCD, and

ASCII data.

PR NN

2 CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

1-1 A HISTORICAL BACKGROUND

This first section outlines the historical events leading to the development of the microprocessor and, specifically,
the extremely powerful and current 80X86,! Pentium, Pentium Pro, Pentium I1I, and Pentium 42 microprocessors.
Although a study of history is not essential to understand the microprocessor, it furnishes interesting reading and
provides a historical perspective of the fast-paced evolution of the computer.

The Mechanical Age

The idea of a computing system is not new—it has been around long before modern electrical and electronic de-
vices were developed. The idea of calculating with a machine dates to 500 B.c. when the Babylonians invented the
abacus, the first mechanical calculator. The abacus, which used strings of beads to perform calculations, was used
by the ancient Babylonian priests to keep track of their vast storehouses of grain. The abacus, which was used ex-
tensively and is still in use today, was not improved until 1642, when mathematician Blaise Pascal invented a cal- -
culator that was constructed of gears and wheels. Each gear contained 10 teeth that, when moved one complete
revolution, advanced a second gear one place. This is the same principal that is used in the automobile’s odometer
mechanism and is the basis of all mechanical calculators. Incidentally, the PASCAL programming language is
named in honor of Blaise Pascal for his pioneering work in mathematics and with the mechanical calculator.

The arrival of the first practical geared, mechanical machines used to automatically compute information dates to
the early 1800s. This is before humans invented the light bulb or before much was known about electricity. In this dawn
of the computer age, humans dreamed of mechanical machines that could compute numerical facts with a program—not
merely calculating fagts, as with a calculator.

In 1937 it was discovered through plans and journals that one early pioneer of mechanical computing ma-
chinery was Charles Babbage, aided by Augusta Ada Byron, the Countess of Lovelace. Babbage was commis-
sioned in 1823 by the Royal Astronomical Society of Great Britain to produce a programmable calculating
machine. This machine was to generate navigational tables for the Royal Navy. He accepted the challenge and
began to create what he called his Analytical Engine. This engine was a mechanical computer that stored 1000
20-digit decimal numbers and a variable program that could modify the function of the machine to perform various
calculating tasks. Input to his engine was through punched cards, much as computers in the 1950s and 1960s used
punched cards. It is assumed that he obtained the idea of using punched cards from Joseph Jacquard, a Frenchman
who used punched cards as input to a weaving machine he invented in 1801, which is today called Jacquard’s
loom. Jacquard’s loom used punched cards to select intricate weaving patterns in the cloth that it produced. The
punched cards programmed the loom.

After many years of work, Babbage’s dream began to fade when he realized that the machinists of his day
were unable to create the mechanical parts needed to complete his work. The Analytical Engine required more than
50,000 machined parts, which could not be made with enough precision to allow his engine to function reliably.

The Electrical Age

The 1800s saw the advent of the electric motor (conceived by Michael Faraday); with it came a multitude of
motor-driven adding machines, all based on the mechanical calculator developed by Blaise Pascal. These electri-
cally driven mechanical calculators were common pieces of office equipment until well into the early 1970s, when
the small hand-held electronic calculator, first introduced by Bomar, appeared. Monroe was also a leading pioneer
of electronic calculators, but its machines were desktop, four-function models the size of cash registers.

In 1889, Herman Hollerith developed the punched card for storing data. Like Babbage, he too apparently
borrowed the idea of a punched card from Jacquard. He also developed a mechanical machine—driven by one of

180X 86 is shorthand notation that includes the 8086, 8088, 80188, 80286, 80386, and 80486 MiCTOPrOCESSOrs.
ZPentium, Pentium Pro, Pentium II, Pentium III, and Pentium 4 are registered trademarks of Intel Corporation.

1-1 A HISTORICAL BACKGROUND 3

the new electric motors—that counted, sorted, and collated information stored on punched cards. The idea of cal-
culating by machinery intrigued the United States government so much that Hollerith was commissioned to use his
punched-card system to store and tabulate information for the 1890 census.

In 1896, Hollerith formed a company called the Tabulating Machine Company, which developed a line of
machines that used punched cards for tabulation. After a number of mergers, the Tabulating Machine Company
was formed into the International Business Machines Corporation, now referred to more commonly as IBM, Inc.
The punched cards used in computer systems are often called Hollerith cards, in honor of Herman Hollerith. The
12-bit code used on a punched card is called the Hollerith code.

Mechanical machines driven by electric motors continued to dominate the information processing world
until the construction of the first electronic calculating machine in 1941 by a German inventor named Konrad
Zuse. His Z3 calculating computer, as pictured in Figure 1-1, was used in aircraft and missile design during World
War II for the German war effort. Had Zuse been given adequate funding by the German government, he most
likely would have developed a much more powerful computer system. Zuse is today finally receiving some belated
honor for his pioneering work in the area of digital electronics which began in the 1930s and for his Z3 computer
system.

It has recently been discovered (through the declassification of British military documents) that the first
electronic computer was placed into operation in 1943 to break secret German military codes. This first electronic
computing system, which used vacuum tubes, was invented by Alan Turing. Turing called his machine Colossus,
probably because of its size. A problem with Colossus was that although its design allowed it to break secret
German military codes generated by the mechanical Enigma machine, it could not solve other problems.

25% TYES
¢ #TYREEER ¥IEY
¥RRBYEE 3ERID

FIGURE 1-1 The Z3 computer developed by Konrad Zuse used a 5.33 Hertz clocking frequency. (Photo
courtesy of Horst Zuse, the son of Konrad.)

4 CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

Colossus was not programmable—it was a fixed-program computer system, which today is often called a special-
purpose computer.

The first general-purpose, programmable electronic computer system was developed in 1946 at the Univer-
sity of Pennsylvania. This first modern computer was called the ENIAC (Electronics Numerical Integrator and
Calculator). The ENIAC was a huge machine, containing over 17,000 vacuum tubes and over 500 miles of wires.
This massive machine weighed over 30 tons, yet performed only about 100,000 operations per second. The ENIAC
thrust the world into the age of electronic computers. The ENIAC was programmed by rewiring its circuits—a
process that took many workers several days to accomplish. The workers changed the electrical connections on
plug-boards that looked like early telephone switchboards. Another problem with the ENIAC was the life of the
vacuum tube components, which required frequent maintenance.

Breakthroughs that followed were the development of the transistor in 1948 at Bell Labs, followed by the
1958 invention of the integrated circuit by Jack Kilby of Texas Instruments. The integrated circuit led to the devel-
opment of digital integrated circuits (RTL, or resistor-to-transistor logic) in the 1960s and the first microprocessor at
Intel Corporation in 1971. At that time, Intel and one of its engineers, Marcian E. Hoff, developed the 4004 micro-
processor—the device that started the microprocessor revolution that continues today at an ever-accelerating pace.

Programming Advancements

Now that programmable machines were developed, programs and programming languages began to appear. As
mentioned earlier, the first programmable electronic computer system was programmed by rewiring its circuits. Be-
cause this proved too cumbersome for practical application, early in the evolution of computer systems, computer
languages began to appear in order to control the computer. The first such language, machine language, was con-
structed of ones and zeros using binary codes that were stored in the computer memory system as groups of in-
structions called programs. This was more efficient than rewiring a machine to program it, but it was still
extremely time-consuming to develop a program because of the sheer number of codes that were required. Mathe-
matician John von Neumann was the first person to develop a system that accepted instructions and stored them in
memory. Computers are often called von Neumann machines in honor of John von Neumann. (Remember that
Babbage also had developed the concept long before von Neumann.)

Once computer systems such as the UNIVAC became available in the early 1950s, assembly language was
used to simplify the chore of entering binary code into a computer as its instructions. The assembler allowed the
programmer to use mnemonic codes, such as ADD for addition, in place of a binary number such as 01000111. Al-
though assembly language was an aid to programming, it wasn’t until 1957, when Grace Hopper developed the
first high-level programming language called FLOW-MATIC, that computers became easier to program. In the
same year, IBM developed FORTRAN (FORmula TRANslator) for its computer systems. The FORTRAN Ian-
guage allowed programmers to develop programs that used formulas to solve mathematical problems. Note that
FORTRAN is still used by some scientists for computer programming. Another similar language, introduced about
a year after FORTRAN, was ALGOL (ALGOrithmic Language).

The first truly successful and widespread programming language for business applications was COBOL
(Computer Business Oriented Language). Although COBOL usage has diminished somewhat in recent years, it
is still a major player in many large business systems. Another once-popular business language is RPG (Report
Program Generator), which allows programming by specifying the form of the input, output, and calculations.

Since these early days of programming, additional languages have appeared. Some of the more common are
BASIC, C/C++, PASCAL, and ADA. The BASIC and PASCAL languages were both designed as teaching lan-
guages, but have escaped the classroom and are used in many computer systems. The BASIC language is probably
the easiest of all to learn. Some estimates indicate that the BASIC language is used in the personal computer for 80
percent of the programs written by users. Recently, a new version of BASIC, VISUAL BASIC, has made pro-
gramming in the WINDOWS environment easier. The VISUAL BASIC language may eventually supplant C/C++
and PASCAL. ‘

In the scientific community, C/C++ and (occasionally) PASCAL appear as control programs. Both lan-
guages, especially C/C++, allow the programmer almost complete control over the programming environment and

1-1 A HISTORICAL BACKGROUND 5

computer system. In many cases, C/C++ is replacing some of the low-level, machine control software normally re-
served for assembly language. Even so, assembly language still plays an important role in programming. Most video
games written for the personal computer are written almost exclusively in assembly language. Assembly language
is also interspersed with C/C++ and PASCAL to perform machine control functions efficiently.

The ADA language is used heavily by the Department of Defense. The ADA language was named in honor
of Augusta Ada Byron, Countess of Lovelace. The Countess worked with Charles Babbage in the early 1800s in
the development of his Analytical Engine.

The Microprocessor Age

The world’s first microprocessor, the Intel 4004, was a 4-bit microprocessor—a programmable controller on a chip.
It addressed a mere 4096 4-bit wide memory locations. (A bit is a binary digit with a value of one or zero. A 4-bit
wide memory location is often called a nibble.) The 4004 instruction set contained only 45 instructions. It was fabri-
cated with the then-current state-of-the-art P-channel MOSFET technology that only allowed it to execute instructions
at the slow rate of 50 KIPs (kilo-instructions per second). This was slow when compared to the 100,000 instructions
executed per second by the 30-ton ENIAC computer in 1946. The main difference was that the 4004 weighed
much less than an ounce.

At first, applications abounded for this device. The 4-bit microprocessor debuted in early video game sys-
tems and small microprocessor-based control systems. One such early video game, a shuffleboard game, was pro-
duced by Balley. The main problems with this early microprocessor were its speed, word width, and memory size.
The evolution of the 4-bit microprocessor ended when Intel released the 4040, an updated version of the earlier
4004. The 4040 operated at a higher speed, although it lacked improvements in word width and memory size.
Other companies, particularly Texas Instruments (TMS-1000), also produced 4-bit microprocessors. The 4-bit mi-
croprocessor still survives in low-end applications such as microwave ovens and small control systems, and is still
available from some microprocessor manufacturers. Most calculators are still based on 4-bit microprocessors that
process 4-bit BCD (binary-coded decimal) codes.

Later in 1971, realizing that the microprocessor was a commercially viable product, Intel Corporation re-
leased the 8008—an extended 8-bit version of the 4004 microprocessor. The 8008 addressed an expanded memory
size (16K bytes) and contained additional instructions (a total of 48) that provided an opportunity for its applica-
tion in more advanced systems. (A byte is generally an 8-bit wide binary number and a K is 1024. Often, memory
size is specified in K bytes.)

As engineers developed more demanding uses for the 8008 microprocessor, they discovered that its some-
what small memory size, slow speed, and instruction set limited its usefulness. Intel recognized these limitations
and introduced the 8080 microprocessor in 1973—the first of the modern 8-bit microprocessors. About six months
after Intel released the 8080 microprocessor, Motorola Corporation introduced its MC6800 microprocessor. The
floodgates opened and the 8080—and, to a lesser degree, the MC6800—ushered in the age of the microprocessor.
Soon, other companies began to introduce their own versions of the 8-bit microprocessor. Table 1-1 lists several of
these early microprocessors and their manufacturers. Of these early microprocessor producers, only Intel and

TABLE 1-1 Early 8-bit microprocessors.

Manufacturer Part Number
Fairchild F-8
intel 8080
MOS Technology 6502
Motorola MC6800
National Semiconductor IMP-8
Rockwell International PPS-8

Zilog Z-8

6 CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

Motorola continue successfully to create newer and improved versions of the microprocessor. Zilog still manufac-
tures microprocessors, but has remained in the background, concentrating on microcontrollers and embedded con-
trollers instead of general-purpose microprocessors. Rockwell has all but abandoned microprocessor development
in favor of modem circuitry. Motorola has declined from having nearly 50 percent share of the microprocessor
market to a much smaller share.

What Was Special about the 80807 Not only could the 8080 address more memory and execute additional in-
structions, but it executed them 10 times faster than the 8008. An addition that took 20 s (50,000 instructions per
second) on an 8008-based system required only 2.0 ps (500,000 instructions per second) on an 8080-based system.
Also, the 8080 was compatible with TTL (transistor-transistor logic), whereas the 8008 was not directly compatible.
This made interfacing much easier and less expensive. The 8080 also addressed four times more memory (64K
bytes) than the 8008 (16K bytes). These improvements are responsible for ushering in the era of the 8080 and the
continuing saga of the microprocessor. Incidentally, the first personal computer, the MITS Altair 8800, was
released in 1974. (Note that the number 8800 was probably chosen to avoid copyright violations with Intel.) The
BASIC language interpreter, written for the Altair 8800 computer, was developed by Bill Gates, the founder of
Microsoft Corporation. The assembler program for the Altair 8800 was written by Digital Research Corporation,
which once produced DR-DOS for the personal computer.

The 8085 Microprocessor. In 1977, Intel Corporation introduced an updated version of the 8080—the 8085.
This was to be the last 8-bit, general-purpose microprocessor developed by Intel. Although only slightly more ad-
vanced than an 8080 microprocessor, the 8085 executed software at an even higher speed. An addition that took
2.0 ps (500,000 instructions per second) on the 8080 required only 1.3 s (769,230 instructions per second) on the
8085. The main advantages of the 8085 were its internal clock generator, internal system controller, and higher
clock frequency. This higher level of component integration reduced the 8085’s cost and increased its usefulness.
Intel has managed to sell well over 100 million copies of the 8085 microprocessor, its most successful 8-bit, gen-
eral-purpose microprocessor. Because the 8085 is also manufactured (second-sourced) by many other companies,
there are over 200 million of these microprocessors in existence. Applications that contain the 8085 will likely
continue to be popular well into the future. Another company that sold 500 million 8-bit microprocessors is Zilog
Corporation, which produced the Z-80 microprocessor. The Z-80 is machine language code-compatible with the
8085, which means that there are over 700 million microprocessors that execute 8085/Z-80 compatible code!

The Modern Microprocessor

In 1978, Intel released the 8086 microprocessor; a year or so later, it released the 8088. Both devices are 16-bit micro-
processors, which executed instructions in as little as 400 ns (2.5 MIPs, or 2.5 millions of instructions per second).
This represented a major improvement over the execution speed of the 8085. In addition, the 8086 and 8088 ad-
dressed 1M bytes of memory, which was 16 times more memory than the 8085. (A 1M byte memory contains
1024K byte-sized memory locations, or 1,048,576 bytes.) This higher execution speed and larger memory size
allowed the 8086 and 8088 to replace smaller minicomputers in many applications. One other feature found in the
8086/8088 was a small 4- or 6-byte instruction cache or queue that prefetched a few instructions before they were
executed. The queue sped the operation of many sequences of instructions and proved to be the basis for the much
larger instruction caches found in modern microprocessors.

The increased memory size and additional instructions in the 8086 and 8088 have led to many sophisticated
applications for microprocessors. Improvements to the instruction set included a multiply-and-divide instruction,
which was missing on earlier microprocessors. In addition, the number of instructions increased from 45 on the
4004, to 246 on the 8085, to well over 20,000 variations on the 8086 and 8088 microprocessors. Note that these mi-
croprocessors were called CISC (complex instruction set computers) because of the number and complexity of in-
structions. The additional instructions eased the task of developing efficient and sophisticated applications, even
though the number of instructions was at first overwhelming and time-consuming to learn. The 16-bit micro-
processor also provided more internal register storage space than the 8-bit microprocessor. The additional registers
allowed software to be written more efficiently.

1-1 A HISTORICAL BACKGROUND 7

The 16-bit microprocessor evolved mainly because of the need for larger memory systems. The popularity of
the Intel family was ensured in 1981, when IBM Corporation decided to use the 8088 microprocessor in its personal
computer. Applications such as spreadsheets, word processors, spelling checkers, and computer-based thesauruses
were memory-intensive and required more than the 64K bytes of memory found in 8-bit microprocessors to execute
efficiently. The 16-bit 8086 and 8088 provided 1M bytes of memory for these applications. Soon, even the 1M
byte memory system proved limiting for large databases and other applications. This led Intel to introduce the 80286
microprocessor, an updated 8086, in 1983.

The 80286 Microprocessor. The 80286 microprocessor (also a 16-bit architecture microprocessor) was almost
identical to the 8086 and 8088, except it addressed a 16M byte memory system instead of a 1M byte system. The
instruction set of the 80286 was almost identical to the 8086 and 8088, except for a few additional instructions that
managed the extra 15M bytes of memory. The clock speed of the 80286 was increased, so it executed some in-
structions in as little as 250 ns (4.0 MIPs) with the original release 8.0 MHz version. Some changes also occurred
in the internal execution of the instructions, which led to an eight-fold increase in speed for many instructions
when compared to 8086/8088 instructions.

The 32-bit Microprocessor. Applications began to demand faster microprocessor speeds, more memory, and
wider data paths. This led to the arrival of the 80386 in 1986, by Intel Corporation. The 80386 represented a major
overhaul of the 16-bit 8086-80286 architecture. The 80386 was Intel’s first practical 32-bit microprocessor that
contained a 32-bit data bus and a 32-bit memory address. (Note that Intel produced an earlier, although unsuc-
cessful, 32-bit microprocessor called the iapx-432.) Through these 32-bit buses, the 80386 addressed up to 4G
bytes of memory. (1G of memory contains 1024M, or 1,073,741,824 locations.) A 4G byte memory can store an
astounding 1,000,000 typewritten, double-spaced pages of ASCII text data. The 80386 was available in a few mod-
ified versions such as the 80386SX, which addressed 16M bytes of memory through a 16-bit data and 24-bit ad-
dress bus, and the 80386SL/80386SLC, which addressed 32M bytes of memory through a 16-bit data and 25-bit
address bus. An 80386SLC version contained an internal cache memory that allowed it to process data at even
higher rates. In 1995, Intel released the 80386EX microprocessor. The 80386EX microprocessor is called an em-
bedded PC because it contains all the components of the AT class personal computer on a single integrated circuit.
The 80386EX also contains 24 lines for input/output data, a 26-bit address bus, a 16-bit data bus, a DRAM refresh
controller, and programmable chip selection logic.

Applications that require higher microprocessor speeds and large memory systems include software systems
that use a GUI, or graphical user interface. Modern graphical displays often contain 256,000 or more picture ele-
ments (pixels, or pels). The least sophisticated VGA (variable graphics array) video display has a resolution of
640 pixels per scanning line with 480 scanning lines. To display one screen of information, each picture element
must be changed, which requires a high-speed microprocessor. Many new software packages use this type of video
interface. These GUI-based packages require high microprocessor speeds and accelerated video adapters for quick
and efficient manipulation of video text and graphical data. The most striking system, which requires high-speed
computing for its graphical display interface, is Microsoft Corporation’s Windows.> We often call a GUI a
WYSIWYG (what you see is what you get) display.

The 32-bit microprocessor is needed because of the size of its data bus, which transfers real (single-preci-
sion floating-point) numbers that require 32-bit wide memory. In order to efficiently process 32-bit real numbers,
the microprocessor must efficiently pass them between itself and memory. If the numbers pass through an 8-bit
data bus, it takes four read or write cycles; when passed through a 32-bit data bus, however, only one read or write
cycle is required. This significantly increases the speed of any program that manipulates real numbers. Most high-
level languages, spreadsheets, and database management systems use real numbers for data storage. Real numbers

3Windows is a registered trademark of Microsoft Corporation and is currently available as Windows 95, Windows 98, Windows
2000, Windows ME, and Windows XP.

8 CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

are also used in graphical design packages that use vectors to plot images on the video screen. These include such
CAD (computer aided drafting/design) systems as AUTOCAD, ORCAD, and so forth.

Besides providing higher clocking speeds, the 80386 included a memory management unit that allowed
memory resources to be allocated and managed by the operating system. Earlier microprocessors left memory man-
agement completely to the software. The 80386 included hardware circuitry for memory management and memory
assignment, which improved its efficiency and reduced software overhead.

The instruction set of the 80386 microprocessor was upward-compatible with the earlier 8086, 8088, and
80286 microprocessors. Additional instructions referenced the 32-bit registers and managed the memory system.
Note that memory management instructions and techniques used by the 80286 were also compatible with the
80386 microprocessor. These features allowed older, 16-bit software to operate on the 80386 microprocessor.

The 80486 Microprocessor. 1In 1989, Intel released the 80486 microprocessor, which incorporated an 80386-like
microprocessor, an 80387-like numeric coprocessor, and an 8K byte cache memory system into one integrated
package. Although the 80486 microprocessor was not radically different from the 80386, it did include one substan-
tial change. The internal structure of the 80486 was modified from the 80386 so that about half of its instructions
executed in one clock instead of two clocks. Because the 80486 was available in a 50 MHz version, about half of
the instructions executed in 25ns (50 MIPs). The average speed improvement for a typical mix of instructions was
about 50 percent over the 80386 that operated at the same clock speed. Later versions of the 80486 executed in-
structions at even higher speeds with a 66 MHz double-clocked version (80486DX2). The double-clocked 66 MHz
version executed instructions at the rate of 66 MHz, with memory transfers executing at the rate of 33 MHz. (This
is why it was called a double-clocked microprocessor.) A triple-clocked version from Intel, the 80486DX4, improved
the internal execution speed to 100 MHz with memory transfers at 33 MHz. Note that the 80486DX4 microprocessor
executed instructions at about the same speed as the 60 MHz Pentium. It also contained an expanded 16K byte cache
in place of the standard 8K byte cache found on earlier 80486 microprocessors. Advanced Micro Devices (AMD) has
produced a triple-clocked version that runs with a bus speed of 40 MHz and a clock speed of 120 MHz. The future
promises to bring microprocessors that internally execute instructions at rates of up to 1 GHz or higher.

Other versions of the 80486 were called Overdrive* processors. The Overdrive processor was actually a
double-clocked version of the 80486DX that replaced an 80486SX or slower-speed 80486DX. When the Overdrive
processor was plugged into its socket, it disabled or replaced the 80486SX or 80486DX, and functioned as a dou-
bled-clocked version of the microprocessor. For example, if an 80486SX, operating at 25 MHz, was replaced with an
Overdrive microprocessor, it functioned as an 80486DX2 50 MHz microprocessor using a memory transfer rate of
25 MHz.

Table 1-2 lists many microprocessors produced by Intel and Motorola with information about their word and
memory sizes. Other companies produce microprocessors, but none have attained the success of Intel and, to a
lesser degree, Motorola. :

The Pentium Microprocessor. The Pentium, introduced in 1993, was similar to the 80386 and 80486 micro-
processors. This microprocessor was originally labeled the P5 or 80586, but Intel decided not to use a number be-
cause it appeared to be impossible to copyright a number. The two introductory versions of the Pentium operated
with a clocking frequency of 60 MHz and 66 MHz, and a speed of 110 MIPs, with a higher-frequency 100 MHz one
and one-half clocked version that operated at 150 MIPs. The double-clocked Pentium, operating at 120 MHz and
133 MHz, was also available, as were higher-speed versions. (The fastest version produced by Intel is the 233 MHz
Pentium, which is a three and one-half clocked version.) Another difference was that the cache size was increased
to 16K bytes from the 8K cache found in the basic version of the 80486. The Pentium contained an 8K byte in-
struction cache and an 8K byte data cache, which allowed a program that transfers a large amount of memory data
to still benefit from a cache. The memory system contained up to 4G bytes, with the data bus width increased from
the 32 bits found in the 80386 and 80486 to a full 64 bits. The data bus transfer speed was either 60 MHz or 66 MHz,
depending on the version of the Pentium. (Recall that the bus speed of the 80486 was 33 MHz.) This wider data bus

4Overdrive is a registered trademark of Intel Corporation.

1-1

A HISTORICAL BACKGROUND

TABLE 1-2 Many modern Intel and Motorola microprocessors.

Manufacturer Part Data Bus Width Memory Size
Intel 8048 8 2K internal
8051 8 8K internal
8085A 8 64K
8086 16 iM
8088 8 iM
8096 16 8K internal
80186 16 iM
80188 8 iM
80251 8 16K internal
80286 16 16M
80386EX 16 64M
80386DX 32 4G
80386SL 16 32M
80386SLC 16 32M + 1K cache
80386SX 16 16M
80486DX/DX2 32 4G + 8K cache
80486SX 32 4G + 8K cache
80486DX4 32 4G + 16K cache
Pentium 64 4G + 16K cache
Pentium Qverdrive (P24T) 32 4G + 16K cache
(replaces 80486)
Pentium Pro processor 64 64G + 16K L1
cache + 256K L2 cache
Pentium Il 64 64G + 32K L1 cache +
512K L2 cache
Pentium Il Xeon 64 64G + 32K L1 cache +
512K or 1M L2 cache
Pentium 1ll, Pentium 4 64 64G + 32K L1 cache +
256K L2 cache
Motorola 6800 8 64K
6805 8 2K
6809 8 64K
68000 16 16M
68008Q 8 iM
68008D 8 aM
68010 16 16M
68020 32 4G
68030 32 4G + 256 cache
68040 32 4G + 8K cache
68050 32 Proposed, but never
released
68060 64 4G + 16K cache
PowerPC 64 4G + 32K cache

10 CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

FIGURE 1-2 The Intel 0 100 200 400 600 800 1000 1200 1400 1600 1800

iCOMP index. ‘
Pentium 200 [——— e e 1810
Pentium 166 e —————————— 570
Pentium 133 1110
Pentium 120 aEeeaeessssn— 1 000
Pentium 100 y y ¥ y m 815
Pentium 90 jssesssmemm— y 735
Pentium 75 [—— 610
Pentium 83* 583
Pentium 66 |— 567
Pentium 60 | ——— 510
Pentium 63* E—————— 443

486 DX4 100
486 DX4 75
486 DX2 66
486 DX 50
486 DX2 50
486 SX2 50
486 DX 33
486 SX2 40
486 SX 33
486 DX 25
486 SX 25
486 SX 20

386 DX 33
386 SX 33
386 DX 25
386 SX 25
386 SX 20
386 SX 16

Note: * = Pentium OverDrive, the first part of the scale is not linear, and the 166 MHz and 200
MHz are MMX technology

width accommodated double-precision floating-point numbers used for modern high-speed, vector-generated graph-
ical displays. These higher bus speeds should allow virtual reality software to operate at more realistic rates on current
and future Pentium-based platforms. The widened data bus and higher execution speed of the Pentium allow full-frame
video displays to operate at scan rates of 30 Hz or higher—comparable to commercial television. Recent versions of
the Pentium also included additional instructions, called multimedia extensions, or MMX instructions. Although Intel
hoped that the MMX instructions would be widely used, it appears that few software companies have used them.
Recently, Intel released the long-awaited Pentium OverDrive (P24T) for older 80486 systems that operate at
either 63 MHz or 83 MHz clock. The 63 MHz version upgrades older 80486DX2 50 MHz systems; the 83 MHz ver-
sion upgrades the 80486DX2 66 MHz systems. The upgraded 83 MHz system performs at a rate somewhere between
a 66 MHz Pentium and a 75 MHz Pentium. If older VESA local bus video and disk-caching controllers seem too ex-
pensive to toss out, the Pentium OverDrive represents an ideal upgrade path from the 80486 to the Pentium.
Probably the most ingenious feature of the Pentium is its dual integer processors. The Pentium executes two
instructions, which are not dependent on each other, simultaneously because it contains two independent internal
integer processors called superscaler technology. This allows the Pentium to often execute two instructions per
clocking period. Another feature that enhances performance is a jump prediction technology that speeds the exe-
cution of programs that include loops. As with the 80486, the Pentium also employs an internal floating-point co-
processor to handle floating-point data, albeit at five times the speed improvement. These features portend
continued success for the Intel family of microprocessors. They also may allow the Pentium to replace some of the
RISC (reduced instruction set computer) machines that currently execute one instruction per clock. Note that
some newer RISC processors execute more than one instruction per clock through the introduction of superscaler
technology. Motorola, Apple, and IBM have recently produced the PowerPC, a RISC microprocessor that has two

1-2 NUMBER SYSTEMS 1

integer units and one floating-point unit. The PowerPC certainly boosts the performance of the Apple Macintosh’,
but at present is slow to emulate the Intel family of microprocessors. Tests indicate that the current emulation
software executes DOS and Windows applications at speed slower than the 804865X 25 MHz microprocessor.
Because of this, the Intel family should survive for many years in personal computer systems. Note that there are
currently 6 million Apple Macintosh’ systems and well over 260 million personal computers based on Intel mi-
croprocessors. In 1998, reports stated that 96 percent of all PCs were shipped with the Windows operating system.

In order to compare the speeds of various microprocessors, Intel devised the iCOMP-rating index. This index
is a composite of SPEC92, ZD Bench, and Power Meter. The iCOMP1 rating was used to rate the speed of all Intel
microprocessors through the Pentium. Figure 1-2 shows the relative speeds of the 80386DX 25 MHz version at the
low end to the Pentium 233 MHz version at the high end of the spectrum.

Since the release of the Pentium Pro and Pentium II, Intel has switched to the iCOMP?2 index, which is scaled
by a factor of 10 from the iCOMP1 index. A microprocessor with an index of 1000 using iCOMP1 is rated as 100
using iCOMP2. Another difference is the benchmarks used for the scores. Figure 1-3 shows the iCOMP?2 index
listing the Pentium II at speed up to 450 MHz.

Pentium Pro Processor. A recent entry from Intel is the Pentium Pro processor, formerly code-named the P6
microprocessor. The Pentium Pro processor contains 21 million transistors, 3 integer units, as well as a floating-
point unit to increase the performance of most software. The basic clock frequency was 150 MHz and 166 MHz
in the initial offering made available in late 1995. In addition to the internal 16K level-one (L1) cache (8K for
data and 8K for instructions), the Pentium Pro processor also contains a 256K level-two (L2) cache. One other
significant change is that the Pentium Pro processor uses three execution engines, so it can execute up to three in-
structions at a time, which can conflict and still execute in parallel. This represents a change from the Pentium,
which executes two instructions simultaneously as long as they do not conflict. The Pentium Pro microprocessor
is optimized to efficiently execute 32-bit code and is used in servers. Pentium Pro can address either 4G Byte or
64G Byte memory systems. For accessing 64G Byte memory Pentium pro can be configured of with 36 bit ad-
dress lines.

1-2 NUMBER SYSTEMS

A sound working knowledge of Binary, Decimal and Hexadecimal number system is required for using Micro-
processors. Those not familiar with these will find this section useful for Interconversion between Decimal, Binary,
Hexadecimal number systems.

Digits

Before numbers are converted from one number base to another, the digits of a number system must be under-
stood. Early in our education, we learned that a decimal, or base 10, number was constructed with 10 digits: 0
through 9. The first digit in any numbering system is always a zero. For example, a base 8 (octal) number con-
tains 8 digits: O through 7; a base 2 (binary) number contains 2 digits: 0 and 1. If the base of a number exceeds
10, the additional digits use the letters of the alphabet, beginning with an A. For example, a base 12 number
contains 12 digits: 0 through 9, followed by A for 10 and B for 11. Note that a base 10 number does not contain
a 10 digit, just as a base 8 number does not contain an & digit. The most common numbering systems used with

computers are decimal, binary, and hexadecimal (base 16). (Many years ago octal numbers were popular.) Each
system is described and used in this section of the chapter.

SMacintosh is a registered trademark of Apple Computer Corporation.

12 CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

-
or -1
~
~N

Pentium Il 1000 MHz

-
n
[-=- T
~

Pentium 11 933 MHz

Pentium I} 866 MHz

-
[N S M.
[$)]

Pentium |1l 800 MHz 1048

Pentium Ill 750 MHz

Pentium Ili 700 MHz 942
Pentium Il 650 MHz 884
Pentium 11l 600 MHz 753
Pentium Il 550 MHz]

Pentium 11l 500 MHz

Pentium 1l 450 MHz 483

Pentium Il 400 MHz 4@0
" Pentium Il 350 MHz 386
Pentium I 333 MHz 366
Pentium [300 MHz 332
Pentium Il 266 MHz 303

Pentium Il 233 MHz

Pentium II* 266 MHz

Pentium 233 MHz

g L N

o U Y - - S

"
v
i
'
4
i
]
'
]
'
I
*
'
v
»
'
v
'
'
i
]
]
[l
t
v
N
.
’
¥
t
s
]
]
.
1]
Il
.
'
'
'

Note: *Pentium Il Celeron, no cache.
iCOMP2 numbers are shown above, to
convert to iCOMP3 multiply by 2.568

FIGURE 1-3 The Intel iCOMP2 index.

Positional Notation

Once the digits of a number system are understood, larger numbers are constructed by using positional notation. In
grade school, we learned that the position to the left of the units position was the tens position, the position to the
left of the tens position was the hundreds position, and so forth. (An example is the decimal number 132: This

1-2 NUMBER SYSTEMS 13

number has 1 hundred, 3 tens, and 2 units.) What probably was not Jearned was the exponential value of each po-
sition: The units position has a weight of 10°, or 1; the tens position has weight of 10!, or 10; and the hundreds po-
sition has a weight of 10, or 100. The exponential powers of the positions are critical for understanding numbers
in other numbering systems. The position to the left of the radix (number base) point, called a decimal point only
in the decimal system, is always the units position in any number system. For example, the position to the left of
the binary point is always 20 or 1; the position to the left of the octal point is 8, or 1. In any case, any number
raised to its zero power is always 1, or the units position.

The position to the left of the units position is always the number base raised to the first power; in a dec-
imal system, this is 101, or 10. In a binary system, it is 2!, or 2; and in an octal system, it is 8!, or 8. Therefore,
an 11 decimal has a different value from an 11 binary. The 11 decimal is composed of 1 ten plus 1 unit, and has
a value of 11 units; while the binary number 11 is composed of 1 two plus 1 unit, for a value of 3 decimal units.
The 11 octal has a value of 9 units.

In the decimal system, positions to the right of the decimal point have negative powers. The first digit to the
right of the decimal point has a value of 1071, or 0.1. In the binary system, the first digit to the right of the binary
point has a value of 2-1, or 0.5. In general, the principles that apply to decimal numbers also apply to numbers in
any other number system.

Example 1-1 shows a 110.101 in binary (often written as 110.101,). It also shows the power and weight or
value of each digit position. To convert a binary number to decimal, add the weights of each digit to form its dec-
imal equivalent. The 110.101, is equivalent to a 6.625 in decimal (4 + 2 +0.5 + 0.125). Notice that this is the sum
of 22 (or 4) plus 2! (or 2), but 2° (or 1) is not added because there are no digits under this position. The fraction part
is composed of 27! (0.5) plus 2-3 (or .125), but there is no digit under the 2-2 (or .25).

EXAMPLE 1-1

Power 22 2! 20 271 272 273

Weight 4 2 1 0.5 0.25 .125

Number 1 1 o . 1 0 1

Numeric Value 4 + 2 + 0 + 0.5 + 0 + .125 = 6.625

Suppose that the conversion technique is applied to a base 6 number, such as 25.2.
Example 1-2 shows this number placed under the powers and weights of each position. In the example, there is a
2 under 6', which has a value of 12, (2 x 6), and a 5 under 6%, which has a value of 5 (5 x 1). The whole number
portion has a decimal value of 12 + 5, or 17. The number to the right of the hex point is a 2 under 671, which has a
value of .333 (2 x .167). The number 25.2, therefore, has a value of 17.333.

EXAMPLE 1-2

Power 6! 60 6t

Weight 6 1 .167

Number 2 5.2

Numeric Value 12 + 5 + .333 = 17.333

Conversion to Decimal

The prior examples have shown that to convert from any number base to decimal, determine the weights or values
of each position of the number, and then sum the weights to form the decimal equivalent. Suppose that a 125.7;
octal is converted to decimal. To accomplish this conversion, first write down the weights of each position of the
number. This appears in Example 1-3 The value of 125.74 is 85.875 decimal, or 1 x 64 plus 2 x 8 plus 5 x 1 plus
7 x 125.

14 CHAPTER1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

EXAMPLE 1-3

Power 82 8! g¢ gt

Weight 64 8 1 .125

Number 1 2 5. 7

Numeric Value 64 + 16 + 5 + .875 = 85.875

Notice that the weight of the position to the left of the units position is 8. This is 8 times 1. Then notice that
the weight of the next position is 64, or 8 times 8. If another position existed, it would be 64 times 8, or 512. To
find the weight of the next higher-order position, multiply the weight of the current position by the number base
(or 8, in this example). To calculate the weights of position to the right of the radix point, divide by the number
base. In the octal system, the position immediately to the right of the octal point is !/8, or .125. The next position is
125/g_ or .015625, which can also be written as /64. Also note that the number in Example 1-3 can also be written
as the decimal number 857/s.

Example 1—4 shows the binary number 11011.0111 written with the weights and powers of each position. If
these weights are summed, the value of the binary number converted to decimal is 27.4375.

EXAMPLE 14

Power 24 23 22 2t 20 271 272 273 274

Weight 16 8 4 2 1 0.5 0.25 .125 .0625

Number 1 1 o] 1 1.0 1 1 1

Numeric Value 16 + 8 + 0+ 2 + 1 + 0 + .25 + .125 + .0625 = 27.4375

It is interesting to note that 27! is also '/2, 272 is !/, and so forth. It is also interesting to note that 2 is !/1s,
or .0625. The fractional part of this number is /16 or .4375 decimal. Notice that 0111 is a 7 in binary code for the
numerator and the rightmost one is in the /16 position for the denominator. Other examples: the binary fraction of
.101 is /8 and the binary fraction of .001101 is 'Y/64.

Hexadecimal numbers are often used with computers. A 6A.CH (H for hexadecimal) is illustrated with its
weights in Example 1-5. The sum of its digits is 106.75, or 106%/4. The whole number part is represented with
6 x 16 plus 10 (A) x 1. The fraction part is 12 (C) as a numerator and 16 (16™") as the denominator, or '%/16, which
is reduced to /4.

EXAMPLE 1-5

Power 16! 16° 1671

Weight 16 1 .0625

Number 6 A C

Numeric Value 96 + 10 + .75 = 106.75

Conversion From Decimal

Conversions from decimal to other number systems are more difficult to accomplish than conversion to decimal.
To convert the whole number portion of a number to decimal, divide by the radix. To convert the fractional por-
tion, multiply by the radix.

Whole Number Conversion from Decimal. To convert a decimal whole number to another number system, di-
vide by the radix and save the remainders as significant digits of the result. An algorithm for this conversion as is
follows:

1. Divide the decimal number by the radix (number base).
2. Save the remainder (first remainder is the least significant digit).
3. Repeat steps 1 and 2 until the quotient is zero.

For example, to convert a 10 decimal to binary, divide it by 2. The result is 5, with a remainder of 0. The first
remainder is the units position of the result (in this example, a 0). Next, divide the 5 by 2. The result is 2, with a

1-2 NUMBER SYSTEMS 15

remainder of 1. The 1 is the value of the two’s (21) position. Continue the division until the quotient is a zero.
Example 1-6 shows this conversion process. The result is written as 1010,, from the bottom to the top.

EXAMPLE 1-6

2) 10 remainder

2) 5 remainder

2) 2 remainder

2)1 remainder
0

oo
» oo

result = 1010

To convert a 10 decimal into base 8, divide by 8, as shown in Example 1-7. A 10 decimal is a 12 octal.

EXAMPLE 1-7
8) 10 remainder = 2
8) 1 remainder = 1 result = 12

0

Conversion from decimal to hexadecimal is accomplished by dividing by 16. The remainders will range in
value from O through 15. Any remainder of 10 though 15 is then converted to the letters A through F for the hexa-
decimal number. Example 1-8 shows the decimal number 109 converted to a 6DH.

EXAMPLE 1-8
16) 109 remainder = 13 (D)
= 6 result = 6D

16) 6 remainder
0

Converting from a Decimal Fraction. Conversion from a decimal fraction to another number base is accom-
plished with multiplication by the radix. For example, to convert a decimal fraction into binary, multiply by 2.
After the multiplication, the whole number portion of the result is saved as a significant digit of the result, and the
fractional remainder is again multiplied by the radix. When the fraction remainder is zero, multiplication ends.
Note that some numbers are never-ending. That is, a zero is never a remainder. An algorithm for conversion from
a decimal fraction is as follows:

1. Multiply the decimal fraction by the radix (number base).

7 Save the whole number portion of the result (even if zero) as a digit. Note that the first result is written imme-
diately to the right of the radix point.

3. Repeat steps 1 and 2, using the fractional part of step 2 until the fractional part of step 2 is zero.

Suppose that a .125 decimal is converted to binary. This is accomplished with multiplications by 2, as illus-
trated in Example 1-9. Notice that the multiplication continues until the fractional remainder is zero. The whole
number portions are written as the binary fraction (0.001) in this example.

EXAMPLE 1-9

.125
x___ 2
0.25 digit is 0

.25
X 2

.5 digit is O

b
o o

1.0 digit is 1. The result is written as 0.001 binary

16 CHAPTER1 INTRODUCTION TO THE MICROPROGESSOR AND COMPUTER

This same technique is used to convert a decimal fraction into any number base. Example 1-10 shows the
same decimal fraction of .125 from Example 1-9 converted to octal by multiplying with an 8.

EXAMPLE 1-10
.125
x 8

1.0 digit is 1. The result is written as 0.1 octal

Conversion to a hexadecimal fraction appears in Example 1-11. Here, a decimal .046875 is converted to
hexadecimal by multiplying by 16. Note that a .046875 is a 0.0CH.

EXAMPLE 1-11
.046875
X i6
0.75 digit is 0
.75
x 16

12.0 digit is 12 (C). The result is written as 0.0C hexadecimal

Binary-Coded Hexadecimal

Binary-coded hexadecimal (BCH) is used to represent hexadecimal data in binary code. A
binary-coded hexadecimal number is a hexadecimal number written so that each digit is represented by a 4-bit bi-
nary number. The values for the BCH digits appear in Table 1-3.

Hexadecimal numbers are represented in BCH code by converting each digit to BCH code, with a space be-
tween each coded digit. Example 1-12 shows a 2AC converted to BCH code. Note that each BCH digit is sepa-
rated by a space.)

TABLE 1-3 Binary-coded hexa-
decimal (BCH) code.

Hexadecimal Digit BCH Code

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

TMOOWPOONONHAWN=O

1-2 NUMBER SYSTEMS 17

EXAMPLE 1-12
2AC = 0010 1010 1100

The purpose of BCH code is to allow a binary version of a hexadecimal number to be written in a form that
can easily be converted between BCH and hexadecimal. Example 1-13 shows a BCH coded number converted
back to hexadecimal code.

EXAMPLE 1-13
1000 0011 1101 . 1110 = 83D.E

Complements

At times, data are stored in complement form to represent negative numbers. There are two systems that are used
to represent negative data: radix and radix -1 complements. The earliest system was the radix —1 complement, in
which each digit of the number is subtracted from the radix —1 to generate the radix —1 complement to represent a
negative number.

Example 1-14 shows how the 8-bit binary number 01001100 is one’s (radix —1) complemented to represent
it as a negative value. Notice that each digit of the number is subtracted from one to generate the radix —1 (one’s)
complement. In this example, the negative of 01001100 is 10110011. The same technique can be applied to any
number system, as illustrated in Example 1-15, in which the fifteen’s (radix —1) complement of a SCD hexadec-
imal is computed by subtracting each digit from a fifteen.

EXAMPLE 1-14

EXAMPLE 1-15

15 15 15
- 5 ¢C D
A 3 2

Today, the radix —1 complement is not used by itself: it is used as a step for finding the radix complement.
The radix complement is used to represent negative numbers in modern computer systems. (The radix —1 comple-
ment was used in the early days of computer technology.) The main problem with the radix —1 complement is that
a negative or a positive zero exists; in the radix complement system, only a positive zero can exist.

To form the radix complement, first find the radix —1 complement, and then add a one to the result. Ex-
ample 1-16 shows how the number 0100 1000 is converted to a negative value by two’s (radix) complementing it.

EXAMPLE 1-16

1111 1111
- 0100 1000

1011 0111 (one'’'s complement)
+ 0000 000212

1011 1000 (two’s complement)

To prove that a 0100 1000 is the inverse (negative) of a 1011 0111, add the two together to form an 8-digit
result. The ninth digit is dropped and the result is zero because a 0100 1000 is a positive 72, while a 1011 0111 is
a negative 72. The same technique applies to any number system. Example 1-17 shows how the inverse of a 345
hexadecimal is found by first fifteen’s complementing the number, and then by adding one to the result to form the

18 CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

sixteen’s complement. As before, if the original 3-digit number 345 is added to the inverse of CBB, the result is a
3-digit 000. As before, the fourth bit (carry) is dropped. This proves that 345 is the inverse of CBB. Additional in-
formation about one’s and two’s complements is presented with signed numbers in the next section of the text.

EXAMPLE 1-17

15 15 15
- 3 4 5

C B A (fifteen’s complement)
+ 0 0 1

C B B (sixteen’s complement)

1-3 COMPUTER DATA FORMATS

Successful programming requires a precise understanding of data formats. In this section, many common com-
puter data formats are described as they are used with the Intel family of microprocessors. Commonly, data appear
as ASCII, BCD, signed and unsigned integers, and floating-point numbers (real numbers). Other forms are avail-
able, but are not presented here because they are not commonly found.

ASCII Data

ASCII (American Standard Code for Information Interchange) data represent alphanumeric characters in the
memory of a computer system (see Table 1-4). The standard ASCII code is a 7-bit code, with the eighth and most
significant bit used to hold parity in some systems. If ASCII data are used with a printer, the most significant bits are
a 0 for alphanumeric printing and 1 for graphics printing. In the personal computer, an extended ASCII character set
is selected by placing a logic 1 in the left-most bit. Table 1-5 shows the extended ASCII character set, using code
80H-FFH. The extended ASCII characters store some foreign letters and punctuation, Greek characters,
mathematical characters, box-drawing characters, and other special characters. Note that extended characters can
vary from one printer to another. The list provided is designed to be use with the IBM ProPrinter® which also matches
the special character set found with some word processors.

The ASCII control characters, also listed in Table 14, perform control functions in a computer system, in-
cluding clear screen, backspace, line feed, and so on. To enter the control codes through the computer keyboard,

TABLE 14 ASCII code

Second

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF
First
0X NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SlI
1X DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EMS SUB ESC FS GS RS US

2X SP ! “ # $ % & () * + , - . /
3X 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4X @ A B C D E F G H | J K. L M N O
5X P Q R S T u v w X Y Z [\] A _
6X ‘ a b c -d e f g h i i k I m n 0
7X p q r s t u v w X y z { | } ~ h

6The IBM ProPrinter is a product of IBM Corporation.

1-3 COMPUTER DATA FORMATS 19

TABLE 1-5 Extended ASCII code, as printed by the IBM ProPrinter.

First Second
X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF

0X © @ ¥ ¢ & ¢ e 0o W 2 H AR
X » « 1t 1 8§ m t 1 1~ = o e a0V
X C o 6 4 4 a & ¢ & & &i 11 AA
9X £ = £6 6 6 4 ax § OU ¢ £ ¥ R f
AXéiéﬁTNa"ér—\%%i«»
BX © & i 1 414
CxLlTk_it“lkll}=Jll
DX 1 = 4 L of o ¥ rillli'
EX o P T n 2 o py @6 8 » ¢ € n
FXEizsl'J+z° yn 2 =m

hold down the Control key while typing a letter. To obtain the control code O1H, type a Control-A; a 02H is
obtained by a Control-B, etc. Note that the control codes appear on the screen, from the DOS prompt, as AA for
Control-A, AB for Control-B, and so forth. Also note that the carriage return code (CR) is the Enter key on most
modern keyboards. The purpose of CR is to return the cursor or print-head to the left margin. Another code that ap-
pears in many programs is the line feed code (LF), which moves the cursor down one line.

To use Table 1-4 or 1-5 for converting alphanumeric or control characters into ASCII characters, first lo-
cate the alphanumeric code for conversion. Next, find the first digit of the hexadecimal ASCII code. Then find the
second digit. For example, the capital letter A is ASCII code 41H, and the lowercase letter a is ASCII code 61H.
Many Windows-based applications use the Unicode system to store alphanumeric data. This system stores each
character as 16-bit data. The codes 0000H-00FFH are the same as standard ASCII code. The remaining codes
0100H— FEFFFH are used to store all special characters from all world-wide character sets. This allows software
written for the Windows environment to be used in any country in the world.

ASCII data are most often stored in memory by using a special directive to the assembler program called de-
fine byte(s), or DB. (The assembler is a program that is used to program a computer in its native binary machine
language.) An alternative to DB is the word BYTE. The DB and BYTE directives, and several examples of their
usage with ASCII-coded character strings, are listed in Example 1-18. Notice how each character string is sur-
rounded by apostrophes (*)—never use the quote (). Also notice that the assembler lists the ASCII-coded value
for each character to the left of the character string. To the far left is the hexadecimal memory location where the
character string is first stored in the memory system. For example, the character string WHAT is stored beginning
at memory address 001D, and the first letter is stored as 57 (W) followed by 68 (H), and so forth.

EXAMPLE 1-18

0000 42 61 72 72 79 NAMES DB 'Barry B. Brey’
20 42 2E 20 42
72 65 79
000D 57 68 65 72 65 MESS DB 'Wwhere can it be?’
20 63 61 6E 20
69 74 20 62 65

20 CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

001D 57 68 61 74 20 WHAT DB ‘What is on first.’
69 73 20 6F 6E
20 66 69 72 73
74 2E

BCD (Binary-Coded Decimal) Data

Binary-coded decimal (BCD) information is stored in either packed or unpacked forms. Packed BCD data are
stored as two digits per byte and unpacked BCD data are stored as one digit per byte. The range of a BCD digit
extends from 00002 to 10012, or 0-9 decimal. Unpacked BCD data are returned from a keypad or keyboard.
Packed BCD data are used for some of the instructions included for BCD addition and subtraction in the instruc-
tion set of the microprocessor.

Table 1-6 shows some decimal numbers converted to both the packed and unpacked BCD forms. Applica-
tions that require BCD data are point-of-sales terminals and almost any device that performs a minimal amount of
simple arithmetic. If a system requires complex arithmetic, BCD data are seldom used because there is no simple
and efficient method of performing complex BCD arithmetic.

Example 1-19 shows how to use the assembler to define both packed and unpacked BCD data. In all cases,
the convention of storing the least-significant data first is followed. This means that to store an 83 into memory,
the 3 is stored first, and then followed by the 8. Also note that with packed BCD data, the letter H (hexadecimal)
follows the number to ensure that the assembler stores the BCD value rather than a decimal value for packed
BCD data. Notice how the numbers are stored in memory as unpacked, one digit per byte; or packed, as two
digits per byte.

EXAMPLE 1-19
;Unpacked BCD data (least-significant data first)

0000 03 04 05 NUMB1 DB

3,4,5 ;defines the number 543
0003 07 08 NUMB2 DB 7,8

;defines the number 87
;Packed BCD data (least-significant data first)

0005 37 34 NUMB3 DB 37H, 34H ;defines the number 3437

0007 03 45 NUMB4 DB 3,45H ;defines the number 4503
Byte-Sized Data

Byte-sized data are stored as unsigned and signed integers. Figure 14 illustrates both the unsigned and signed
forms of the byte-sized integer. The difference in these forms is the weight of the leftmost bit position. Its value is
128 for the unsigned integer and minus 128 for the signed integer. In the signed integer format, the leftmost bit rep-
resents the sign bit of the number, as well as a weight of minus 128. For example, an 80H represents a value of 128
as an unsigned number; as a signed number, it represents a value of minus 128. Unsigned integers range in value
from 00H-FFH (0-255). Signed integers range in value from —128 to 0 to +127.

TABLE 1-6 Packed and unpacked BCD data.

Decimal Packed Unpacked
12 0001 0010 0000 0001 0000 0010
623 0000 0110 0010 0011 0000 0110 0000 0010 0000 0011

910 0000 1001 0001 0000 0000 1001 0000 0001 0000 0000

1-3 COMPUTER DATA FORMATS 21

128 64 32 16 8 4 2 1 Binary weights
Unsigned byte
-128 64 32 16 8 4 2 1 Binary weights
Signed byte

FIGURE 1-4 The unsigned and signed bytes illustrating the weights of each binary-bit
position.

Although negative signed numbers are represented in this way, they are stored in the two’s complement
form. The method of evaluating a signed number by using the weights of each bit position is much easier than the
act of two’s complementing a number to find its value. This is especially true in the world of calculators designed
for programmers.

Whenever a number is two’s complemented, its sign changes from negative to positive or positive to negative.
For example, the number 00001000 is a +8. Its negative value (-8) is found by two’s complementing the +8. To form
atwo’s complement, first one’s complement the number. To one’s complement a number, invert each bit of a number
from zero to one or from one to zero. Once the one’s complement is formed, the two’s complement is found by
adding a one to the one’s complement. Example 1-20 shows how numbers are two’s complemented using this tech-
nique.

EXAMPLE 1-20

+8 = 00001000

11110111 (one’s complement)
+ 1
-8 = 11111000 (two’s complement)

Another, and probably simpler, technique for two’s complementing a number starts with the rightmost digit.
Start writing down the number from right to left. Write the number exactly as it appears until the first one. Write
down the first one, and then invert of complement all remaining ones to its left. Example 1-21 shows this technique
with the same number as in Example 1-20.

EXAMPLE 1-21

+8 = 00001000

1000 (write number to first 1)
1111 (invert the remaining bits)
11111000

|

-8

To store 8-bit data in memory using the assembler program, use the DB directive as in prior examples. Ex-
ample 1-22 lists many forms of 8-bit numbers stored in memory using the assembler program. Notice in the ex-
ample that a hexadecimal number is defined with the letter H following the number, and that a decimal number is
written as is, without anything special.

22

EXAMPLE 1-22

CHAPTER 1

INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

;Unsigned byte-sized data

DATAl

0000 FE DB
0001 87 DATA2 DB
0002 47 DATA3 DB
; Signed
0003 9C DATA4 DB
0004 64 DATAS DB
0005 FF DATAG DB
0006 38 DATA7 DB
Word-Sized Data

254
87H
71

-100
+100
-1
56

;define 254 decimal
;define 87 hexadecimal
;define 71 decimal

byte-sized data

;define a -100 decimal
;define a +100 decimal
;define a -1 decimal
;define a 56 decimal

A word (16-bits) is formed with two bytes of data. The least significant byte is always stored in the lowest-num-
bered memory location, and the most significant byte is stored in the highest. This method of storing a number is
called the little endian format. An alternate method, not used with the Intel family of microprocessors, is called
the big endian format. In the big endian format, numbers are stored with the lowest location containing the most
significant data. The big endian format is used with the Motorola family of microprocessors. Figure 1-5 (a) shows
the weights of each bit position in a word of data, and Figure 1-5 (b) shows how the number 1234H appears when
stored in the memory location 3000H and 3001H. The only difference between a signed and an unsigned word is
the leftmost bit position. In the unsigned form, the leftmost bit is unsigned; in the signed form, its weight is a
-32,768. As with byte-sized signed data, the signed word is in two’s complement form when representing a

32,768

16,384

8192

4096
2048
1024

512

256
128

v~

64
32
16
8
4
2

Binary weights

3003H
3002H
3001H
3000H
2FFFH

(a) Unsigned word

/——\/—‘/

12H

High-order byte

34H

Low-order byte

/_/_/

(b) The contents of memory location 3000H and 3001H are the word 1234H.

FIGURE 1-5 The storage format for a 16-bit word in (a) a register and (b) two bytes of memory.

1-3 COMPUTER DATA FORMATS

23

negative number. Also, notice that the low-order byte is stored in the lowest-numbered memory location (3000H)
and the high-order byte is stored in the highest-numbered location (3001H).

Example 1-23 shows several signed and unsigned word-sized data stored in memory using the assembler pro-
gram. Notice that the define word(s) directive, or DW, causes the assembler to store words in the memory instead of
bytes, as in prior examples. The WORD directive can also be used to define a word. Notice that the word data is dis-
played by the assembler in the same form as entered. For example, a 1000H is displayed by the assembler as a 1000.
This is for our convenience because the number is actually stored in the memory as 00 10 in two consecutive memory

bytes.

EXAMPLE 1-23

0000
0002
0004

0006
0008
000A

09F0
87AC
02Cé6

CBA8
00C6
FFFF

;Unsigned word-sized data

DATAl Dw

DATA2 DW
DATA3 DW

7

2544 ;define 2544 decimal
87ACH ;define 87AC hexadecimal
710 ;define 710 decimal

;Signed word-sized data

DATA4 Dw

DATAS Dw
DATA6 DW

Doubleword-Sized Data

Doubleword-sized data requires four bytes of memory because it is a 32-bit number. Doubleword data appear as a
product after a multiplication and also as a dividend before a division. In the 80386 through the Pentium 4, memory
and registers are also 32 bits in width. Figure 1-6 shows the form used to store doublewords in the memory and the
binary weights of each bit position.

-13400 ;define a -13400 decimal
+198 ;define a +198 decimal
-1 ;define a -1 decimal

(b) The contents of memory location 00100H —00103H are the doubleword 12345678H.

® ¢
LI
gr2IRg8gII8IBE
SRggtssre8 883N ey
N O % O o TN ON - O D o <
TH oo T‘Q'ﬁmma’gvmv—“’.'\."’.mggmwwm
~0 883NN mCCO 0 dDwA O = Q S rLwN3gy e
Nv-lan-(Dmv—mvt\lv-lan-CD("Jv—wv'NPtan- M - © ¢ N -
(a) Unsigned doubleword
00103H 12H High-order byte
00102H 34H
00101H 56H
00100H 78H <« Low-order byte
000FFH

Binary weights

FIGURE 1-6 The storage format for a 32-bit word in (a) a register and (b) four bytes of memory.

24 CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

When a doubleword is stored in memory, its least significant byte is stored in the lowest-numbered memory
location, and its most significant byte is stored in the highest-numbered memory location using the little endian
format. Recall that this is also true for word-sized data. For example, a 12345678H that is stored in memory loca-
tion 00100H-00103H is stored with the 78H in memory location 00100H, the 56H in location 00101H, the 34H in
location 00102H, and the 12H in location 00103H.

To define doubleword-sized data, use the assembler directive define doubleword(s), or DD. (You can also
use the DWORD directive in place of DD.) Example 1-24 shows both signed and unsigned numbers stored in
memory using the DD directive.

EXAMPLE 1-24

;Unsigned doubleword-sized data

0000 0003E1CO DATAlL DD 254400 ;define 254400 decimal

0004 87AC1234 DATA2 DD 87AC1234H ;define 87AC1234 hexadecimal
0008 00000046 DATA3 DD 70 ;define 70 decimal

;Signed doubleword-sized data

000C FFEB8058 DATA4 DD -1343400 ;define a -1343400 decimal

0010 000000C6 DATAS DD +198 ;define a +198 decimal
0014 FFFFFFFF DATA6 DWORD -1 ;define a -1 decimal

Integers may also be stored in memory that is of any width. The forms listed here are standard forms, but that
doesn’t mean that a 128-byte wide integer can’t be stored in the memory. The microprocessor is flexible enough to
allow any size of data. When nonstandard width numbers are stored in memory, the DB directive is normally used
to store them. For example, the 24-bit number 123456H is stored using a DB 56H,34H,12H directive. Note that
this conforms to the little endian format.

Real Numbers

Because many high-level languages use the Intel family of microprocessors, real numbers are often encountered. A
real number, or a floating-point number, as it is often called, contains two parts: a mantissa, significand, or frac-
tion; and an exponent. Figure 1-7 depicts both the 4- and 8-byte forms of real numbers as they are stored in any Intel
system. Note that the 4-byte real number is called single-precision and the 8-byte form is called double-precision.

31 30 23 22 0
S Exponent Significand
®
(a)
63 62 52 51 0
S Exponent Significand

b

(b)
FIGURE 1-7 The floating-point numbers (a) single-precision using a bias of 7FH and
(b) double-precision using a bias of 3FFH.

1-3 COMPUTER DATA FORMATS 25

TABLE 1-7 Single-precision real numbers

Decimal Binary Normalized Sign Biased Exponent Mantissa
+12 1100 1.1 x 28 0] 10000010 1000000 00000000 00000000
-12 1100 -1.1 x 28 1 10000010 1000000 00000000 00000000
+100 1100100 1.1001 x 28 0 10000101 1001000 00000000 00000000
-1.75 1.11 -1.11 x 20 1 01111111 1100000 00000000 00000000
+0.25 .01 1.0x 272 0 01111101 0000000 00000000 00000000
+0.0 0 0 0 00000000 0000000 00000000 00000000

The form presented here is the same form specified by the IEEE’ standard, IEEE-754, version 10.0. This standard
has been adopted as the standard form of real numbers with virtually all high-level programming languages and
many applications packages. The standard also applies to data manipulated by the numeric coprocessor in the per-
sonal computer. Figure 1-7 (a) shows the single-precision form that contains a sign-bit, an 8-bit exponent, and a 24-
bit fraction (mantissa). Note that because applications often require double-precision floating-point numbers [see
Figure 1-7 (b)], the Pentium—Pentium 4 with their 64-bit data bus perform memory transfers at twice the speed of
the 80386/80486 microprocessors.

Simple arithmetic indicates that it should take 33 bits to store all three pieces of data. Not true—the 24-bit
mantissa contains an implied (hidden) one-bit that allows the mantissa to represent 24 bits while being stored in
only 23 bits. The hidden bit is the first bit of the normalized real number. When normalizing a number, it is ad-
justed so that its value is at least 1, but less than 2. For example, if 12 is converted to binary (1 100,), it is normal-
ized and the result is 1.1 x 23. The | is not stored in the 23-bit mantissa portion of the number; the 1 is the hidden
one-bit. Table 1-7 shows the single-precision form of this number and others.

The exponent is stored as a biased exponent. With the single-precision form of the real number, the bias is
127 (7FH) and with the double-precision form, it is 1023 (3FFH). The bias adds to the exponent before is stored
into the exponent portion of the floating-point number. In the previous example, there is an exponent of 23, repre-
sented as a biased exponent of 127 + 3 or 130 (82H) in the single-precision form, or as 1026 (402H) in the double-
precision form.

. There are two exceptions to the rules for floating-point numbers. The number 0.0 is stored as all zeros. The
number infinity is stored as all ones in the exponent and all zeros in the mantissa. The sign-bit indicates either a
positive or a negative infinity.

As with other data types, the assembler can be used to define real numbers in both single- and double-preci-
sion forms. Because single-precision numbers are 32-bit numbers, use the DD directive or use the define quad-
words(s), or DQ, directive to define 64-bit double-precision real numbers. Optional directives for real numbers are
REALA4, REALS, and REAL10 for defining single-, double-, and extended precision real numbers. Example 1-25
shows numbers defined in real number format.

EXAMPLE 1-25

;Single-precision real numbers

0000 3F9DF3B6 NUMB1 DD 1.234 ;define 1.234

0004 C1BB3333 NUMB2 DD -23.4 ;define -23.4
0008 43D20000 NUMB3 REAL4 4.2E2 ;define 420

000C 3F9DF3B6 NUMB4 REAL4 1.234 ;define a 4-byte real number

"IEEE is the Institute of Electrical and Electronic Engineers.

26

CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

;Double-precision real numbers

0010 NUMB5 DQ 123.4 ;define 123.4

405ED9999999993%A

0018 NUMB6 REALS -23.4 ;define -23.4
C1BB333333333333

0028 NUMB7 REALS8 123.4 ;define an 8-byte real number
405ED9999999999A

H
;Extended-precision real numbers

0030 NUMB8 REAL10 123.4 ;define a 10-byte real number

4005F6CCCCCCCCCCCCED
1-4 SUMMARY

. The mechanical computer age began with the advent of the abacus in 500 B.C. This first mechanical calculator

remained unchanged until 1642, when Blaise Pascal improved it. An early mechanical computer system was
the Analytical Engine developed by Charles Babbage in 1823. Unfortunately, this machine never functioned
because of his inability to create the necessary machine parts.

. The first electronic calculating machine was developed during World War Il by Konrad Zuse, an early pioneer

of digital electronics. His computer, the Z3, was used in aircraft and missile design for the German war effort.

. The first electronic computer, which used vacuum tubes, was placed into operation in 1943 to break secret

German military codes. This first electronic computer system, the Colossus, was invented by Alan Turing. Its
only problem was that the program was fixed and could not be changed.

. The first general-purpose, programmable electronic computer system was developed in 1946 at the University

of Pennsylvania. This first modern computer was called the ENIAC (Electronics Numerical Integrator and
Calculator).

. The first high-level programming language, called FLOW-MATIC, was developed for the UNIVAC I com-

puter by Grace Hopper in the early 1950s. This led to FORTRAN and other early programming languages
such as COBOL.

. The world’s first microprocessor, the Intel 4004, was a 4-bit microprocessor—a programmable controller on

a chip—that was meager by today’s standards. It addressed a mere 4096 four-bit memory locations. Its in-
struction set contained only 45 different instructions.

Microprocessors that are common today include the 8086/8088, which were the first 16-bit microproces-
sors. Following these early 16-bit machines were the 80286, 80386, 80486, Pentium, Pentium Pro, Pentium
11, Pentium III, and Pentium 4 processors. The architecture has changed from 16 bits to 32 bits and soon,
with the Merced, to 64 bits. With each newer version, improvements followed that increased the
processor’s speed and performance. From all indications, this process of speed and performance improve-
ment will continue.

Microprocessor-based personal computers contain memory systems that include three main areas: TPA (tran-
sient program area), system area, and extended memory. The TPA holds application programs, the operating
system, and drivers. The system area contains memory used for video display cards, disk drives, and the BIOS
ROM. The extended memory area is only available to the 80286 through the Pentium 4 microprocessor in an
AT-style personal computer system.

The 8086/8088 address 1M byte of memory from location 00000H-FFFFFH. The 80286 and 80386SX ad-
dress 16M bytes of memory from location 000000H-FFFFFFH. The 80386SL addresses 32M bytes of memory
from location 0000000H-1FFFFFFH. The 80386DX and 80486 through Pentium 4 processors address 4G bytes

1-4

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

SUMMARY 97

of memory from location 00000000H-FFFFFFFFH. In addition, the Pentium Pro through the Pentium 4 can run
with a 36-bit address and access up to 64G bytes of memory from location 000000000H-FFFFFFFFFH.

All versions of the 8086-80486 and Pentium—Pentium 4 microprocessors address 64K bytes of I/O address
space. These I/O ports are numbered from 0000H-FFFFH with I/O ports 0000H-03FFH reserved for use by
the personal computer system.

The operating system in many personal computers is either MSDOS (Microsoft disk operating system) or
PCDOS (personal computer disk operating system from IBM). The operating system performs the task of op-
erating or controlling the computer system, along with its I/O devices.

The microprocessor is the controlling element in a computer system. The microprocessor performs data trans-
fers, does simple arithmetic and logic operations, and makes simple decisions. The microprocessor executes
programs stored in the memory system to perform complex operations in short periods of time.

All computer systems contain three buses to control memory and I/O. The address bus is used to request a memory
location or I/O device. The data bus transfers data between the microprocessor and its memory and I/O spaces.
The control bus controls the memory and /O, and requests reading or writing of data. Control is accomplished
with IORC (I/O read control), IOWC (I/O write control), MRDC (memory read control), and MWTC (memory
write control).

Numbers are converted from any number base to decimal by noting the weights of each position. The weight
of the position to the left of the radix point is always the units position in any number system. The position to
the left of the units position is always the radix times one. Succeeding positions are determined by multiplying
by the radix. The weight of the position to the right of the radix point is always determined by dividing by the
radix.

Conversion from a whole decimal number to any other base is accomplished by dividing by the radix. Con-
version from a fractional decimal number is accomplished by multiplying by the radix.

Hexadecimal data are represented in hexadecimal form or in a code called binary-coded hexadecimal (BCH).
A binary-coded hexadecimal number is one that is written with a 4-bit binary number that represents each
hexadecimal digit.

The ASCII code is used to store alphabetic or numeric data. The ASCII code is a 7-bit code; it can have an
eighth bit that is used to extend the character set from 128 codes to 256 codes. The carriage return (Enter)
code returns the print head or cursor to the left margin. The line feed code moves the cursor or print head
down one line.

Binary-coded decimal (BCD) data are sometimes used in a computer system to store decimal data. These data
are stored either in packed (two digits per byte) or unpacked (one digit per byte) form.

Binary data are stored as a byte (8 bits), word (16 bits), or doubleword (32 bits) in a computer system. These
data may be unsigned or signed. Signed negative data are always stored in the two’s complement form. Data
that are wider than 8 bits are always stored using the little endian format.

Floating-point data are used in computer systems to store whole, mixed, and fractional numbers. A floating-
point number is composed of a sign, a mantissa, and an exponent.

The assembler directives DB or BYTE define bytes, DW or WORD define words, DD or DWORD define
doublewords, and DQ or QWORD define quadwords.

Example 1-26 shows the assembly language formats for storing numbers as bytes, words, doublewords, and
real numbers. Also shown are ASCII-coded character strings.

EXAMPLE 1-26

;ASCII data

0000 54 68 69 73 20 69 MES1 DB ‘This is a character string in ASCII’

73 20 61 20 63 68

28

CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

61 72 61 63 74 65
72 20 73 74 72 69
6E 67 20 69 6E 20
41 53 43 49 49

0023 53 6F 20 69 73 20 MES2 DB 'So is this’
74 68 69 73

;BYTE data

002D 17 DATAl DB 23 ;23 decimal

002E DE DATA2 DB -34 ;-34 decimal

002F 34 DATA3 DB 34H ;34 hexadecimal
;WORD data

0030 1000 DATA4 DW 1000H ;1000 hexadecimal

0032 FF9C DATAS Dw -100 ;-100 decimal

0034 000C DATA6 DW +12 ;=12 decimal

; DOUBLEWORD data

7

0036 00001000 DATA7 DD 1000H ;1000 hexadecimal
003A FFFFFED4 DATAS8 DD -300 ;~300 decimal
003E 00012345 DATA9 DD 12345H ;12345 hexadecimal
;Real data
0042 4015C28F DATA10 REAL4 2.34 ;2.34 decimal
0046 cC00CCCCD DATAll REAL4 -2.2 ;-2.2 decimal
004A DATAl12 REAL8 100.3 ;100.3 decimal
4059133333333333

1-5 QUESTIONS AND PROBLEMS

N R R

Pt et ek el ek et et et ek
D 0T E LN~ O

. Who developed the Analytical Engine?
. The 1890 census used a new device called a punched card. Who developed the punch card?

Who was the founder of IBM Corporation?
Who developed the first electronic calculator?

. The first electronic computer system was developed for what purpose?
. The first general-purpose, programmable computer was called the

. The world’s first microprocessor was developed in 1971 by

. Who was the Countess of Lovelace?

Who developed the first high-level programming language called FLOW-MATIC?
What is a von Neumann machine?

. Which 8-bit microprocessor ushered in the age of the microprocessor?

. The 8085 microprocessor, introduced in 1977, has sold copies.
. Which Intel microprocessor was the first to address 1M bytes of memory?
. The 80386SL addresses bytes of memory.

. How much memory is available to the 80486 microprocessor?
. When did Intel introduce the Pentium microprocessor?

. When did Intel introduce the Pentium Pro processor?

. When did Intel introduce the Pentium 4 microprocessor?

. Which Intel microprocessors address 64G of memory?

20.
21.
22.
23.

24.

25.
26.

27.

28.

29.
30.
31.
32.

33.

34.

35.

36.

37.

38.

QUESTIONS AND PROBLEMS

What is the acronym MIPs?
What is the acronym CISC?

A binary bit stores a(n) or a(n)

A computer K is equal to bytes.

A computer M is equal to K bytes.
A computer G is equal to M bytes.

How many typewritten pages of information are stored in a 4G-byte memory system?
The first IM byte of memory in a computer system contains a(n) and a(n)
How much memory is found in the transient program area?

How much memory is found in the systems area?

The 8086 microprocessor addresses bytes of memory.

The Pentium 4 microprocessor addresses bytes of memory.
Which microprocessors address 4G bytes of memory?

Convert the following binary numbers into decimal:

(a) 1101.01

(b) 111001.0011

(c) 101011.0101

(d) 111.0001

Convert the following octal numbers into decimal:

(a) 2345

(b) 123

(c) 7767.07

(d) 123.45

(e) 72.72

Convert the following hexadecimal numbers into decimal:

(a) A33

(b) 129.C

(c¢) AC.DC

(d) FAB.3

(e) BB8.0D

Convert the following decimal integers into binary, octal, and hexadecimal:
(a) 23

(b) 107

(c) 1238

(d) 92

(e) 173

Convert the following decimal numbers into binary, octal, and hexadecimal:
(a) 0.625

(b) .00390625

(c) .62890625

(d) 0.75

(e) 9375

Convert the following hexadecimal numbers into binary-coded hexadecimal code (BCH):

(a) 23
(b) AD4
(¢) 34.AD

29

30

39.

40.

4]1.

42.
43.

47.

48.
49.

50.

51.

CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

(d) BD32

(e) 2343

Convert the following binary-coded hexadecimal numbers into hexadecimal:
(a) 11000010

(b) 00010000 1111 1101

(c) 10111100

(d) 0001 0000

(e) 10001011 1010

Convert the following binary numbers to the one’s complement form:
(a) 1000 1000

(b) 0101 1010

(c) 01110111

(d) 1000 0000

Convert the following binary numbers to the two’s complement form:
(a) 1000 0001

(b) 1010 1100

(c) 10101111

(d) 1000 0000

Define byte, word, and doubleword.

Convert the following words into ASCII-coded character strings:

(a) FROG

(b) Arc

(c) Water

(d) Well

. What is the ASCII code for the Enter key and what is its purpose?
45.
. Convert the following decimal numbers into 8-bit signed binary numbers:

Use an assembler directive to store the ASCII-character string ‘What time is it?’ in the memory.

(a) +32

(b) -12

(c) +100

d) 92

Convert the following decimal numbers into signed binary words:
(a) +1000

(b) -120

(c) +800

(d) -3212

Use an assembler directive to store —34 into the memory.

Show how the following 16-bit hexadecimal numbers are stored in the memory system (use the standard Intel

format):

(a) 1234H
(b) A122H
(c) B10OH

What is the difference between the big endian and little endian formats for storing numbers that are larger than

eight bits in width?
Use an assembler directive to store a 123A hexadecimal into the memory.

52.

53.

54.

55.

56.

57.

58.

59.

QUESTIONS AND PROBLEMS _ 31

Convert the following decimal numbers into both packed and unpacked BCD forms:

(a) 102

(b) 44

(c) 301

(d) 1000 :

Convert the following binary numbers into signed decimal numbers:

(a) 10000000

(b) 00110011

(c) 10010010

(d) 10001001

Convert the following BCD numbers (assume that these are packed numbers) into decimal numbers:
(a) 10001001

(b) 00001001

(c) 00110010

(d) 00000001

Convert the following decimal numbers into single-precision floating-point numbers:

(a) +1.5

(b) -10.625

(c) +100.25

(d) -1200

Convert the following single-precision floating-point numbers into decimal numbers:

(a) 0 10000000 11000000000000000000000

(b) 101111111 00000000000000000000000

(¢) 010000010 10010000000000000000000

Use the Internet to write a short report about any one of the following computer pioneers:
(a) Charles Babbage

(b) Konrad Zuse

(c) Joseph Jacquard

(d) Herman Hollerith

Use the Internet to write a short report about any one of the following computer languages:
(a) COBOL

(b) ALGOL

(c) FORTRAN

(d) PASCAL

Use the Internet to write a short report detailing the features of the Merced microprocessor.

CHAPTER 2
The Microprocessor and its Architecture

INTRODUCTION

This chapter presents the microprocessor as a programmable device by first looking at its internal programming
model and then at how it addresses its memory space. The architecture of the entire family of Intel microproces-
sors is presented simultaneously, as are the ways that the family members address the memory system.

The addressing modes for this powerful family of microprocessors are described for both the real and pro-
tected modes of operation. Real mode memory exists at locations 00000H-FFFFFH—the first IM byte of the
memory system—and is present on all versions of the microprocessor. Protected mode memory exists at any lo-
cation in the entire memory system, but is available only to the 80286—Pentium 4, not to the earlier 8086 or 8088
microprocessors. Protected mode memory for the 80286 contains 16M bytes; for the 80386-Pentium, 4G bytes;
and for the Pentium Pro through the Pentium 4, either 4G or 64G bytes.

CHAPTER OBJECTIVES

Upon completion of this chapter, you will be able to:

1. Describe the function and purpose of each program-visible register in the 808680486 and Pentium—Pentium
4 microprocessors.

Detail the flag register and the purpose of each flag bit.

Describe how memory is accessed using real mode memory-addressing techniques.

Describe how memory is accessed using protected mode memory-addressing techniques.

Describe the program-invisible registers found within the 80286 through Pentium 4 microprocessors.

. Detail the operation of the memory-paging mechanism.

AN ol ol A

2-1 INTERNAL MICROPROCESSOR ARCHITECTURE

Before a program is written or any instruction investigated, the internal configuration of the microprocessor must
be known. This section of the chapter details the program-visible internal architecture of the 8086-80486 and
the Pentium—-Pentium 4 microprocessors. Also detailed are the function and purpose of each of these internal
registers.

32

2-1 INTERNAL MICROPROCESSOR ARCHITECTURE 33

*’The Programming Model

The programming model of the 8086 through the Pentium 4 is considered to be program visible because its reg-
isters are used during application programming and are specified by the instructions. Other registers, detailed later
in this chapter, are considered to be program invisible because they are not addressable directly during applica-
tions programming, but may be used indirectly during system programming. Only the 80286 and above contain the
program-invisible registers used to control and operate the protected memory system.

Figure 2-1 illustrates the programming model of the 8086 through the Pentium 4 microprocessor.
The earlier 8086, 8088, and 80286 contain 16-bit internal architectures, a subset of the registers shown in

FIGURE 2-1 The programming 8-bit
model of the Intel 8086 through names
the Pentium 4. 32-bit ﬂ;; '
" names _ v names
EAX | : £ A:X AL | Accumulator
EBX B:X BL Base index
Ecx | c:x cL | Count
EDX : D{X DL Data
ESP SP Stack pointer
EBP BP Base pointer
ED! DI Destination index
ESI S| Source index
EIP P Instruction pointer
EFLAGS FLAGS Flags
Ccs Code
DS Data
ES Extra
SS Stack

Notes:
1. The shaded areas registers exist only on the
80386 through the Pentium 4.

2. The FS and GS register have no special
names.

34 CHAPTER 2 THE MICROPROCESSOR AND ITS ARCHITECTURE

Figure 2-1. The 80386 through the Pentium 4 microprocessors contain full 32-bit internal architectures. The architec-
tures of the earlier 8086 through the 80286 are fully upward-compatible to the 80386 through the Pentium 4. The shaded
areas in this illustration represent registers that are not found in the 8086, 8088, or 80286 microprocessors and are en-
hancements provided on the 80386, 80486, Pentium, Pentium Pro, Pentium II, Pentium III, and Pentium 4 microproces-
SOrS. :

The programming model contains 8-, 16-, and 32-bit registers. The 8-bit registers are AH, AL, BH, BL, CH, CL,
DH, and DL and are referred to when an instruction is formed using these two-letter designations. For example, an ADD
AL,AH instruction adds the 8-bit contents of AH to AL. (Only AL changes due to this instruction.) The 16-bit registers
are AX, BX, CX, DX, SP, BP, DI, SI, IP, FLAGS, CS, DS, ES, SS, FS, and GS. These registers are also referenced with
the two-letter designations. For example, an ADD DX,CX instruction adds the 16-bit contents of CX to DX. (Only DX
changes due to this instruction.) The extended 32-bit registers are EAX, EBX, ECX, EDX, ESP, EBP, EDI, ESI, EIP,
and EFLAGS. These 32-bit extended registers, and 16-bit registers FS and GS, are available only in the 80386 and
above. These registers are referenced by the designations FS or GS for the two new 16-bit registers, and by a three-letter
designation for the 32-bit registers. For example, an ADD ECX,EBX instruction adds the 32-bit contents of EBX to
ECX. (Only ECX changes due to this instruction.)

Some registers are general-purpose or multipurpose registers, while some have special purposes. The multipur-
pose registers include EAX, EBX, ECX, EDX, EBP, EDI, and ESI. These registers hold various data sizes (bytes,
words, or doublewords) and are used for almost any purpose, as dictated by a program.

Multipurpose Registers

EAX EAX is referenced as a 32-bit register (EAX), as a 16-bit register (AX), or as

(accumulator) either of two 8-bit registers (AH and AL). Note that if an 8- or 16-bit register is
addressed, only that portion of the 32-bit register changes without affecting the
remaining bits. The accumulator is used for instructions such as multiplication,
division, and some of the adjustment instructions. For these instructions, the
accumulator has a special purpose, but is generally considered to be a multipurpose
register. In the 80386 and above, the EAX register may also hold the offset address of
a Jocation in the memory system.

EBX EBX is addressable as EBX, BX, BH, or BL. The BX register sometimes holds

(base index) the offset address of a location in the memory system in all versions of the
microprocessor. In the 80386 and above, EBX also can address memory data.

ECX ECX is a general-purpose register that also holds the count for various

(count) instructions. In the 80386 and above, the ECX register also can hold the offset address
of memory data. Instructions that use a count are the repeated string instructions
(REP/REPE/REPNE); and shift, rotate, and LOOP/LOOPD instructions. The shift
and rotate instructions use CL as the count, the repeated string instructions use CX,
and the LOOP/LOOPD instructions use either CX or ECX.

EDX EDX is a general-purpose register that holds a part of the result from a

(data) multiplication or part of the dividend before a division. In the 80386 and above, this
register can also address memory data. DX is used in 16 bit, DH and DL are pairs.

EBP EBP points to a memory location in all versions of the microprocessor for

(base pointer) memory data transfers. This register is addressed as either BP or EBP.

EDI EDI often addresses string destination data for the string instructions. It also

(destination index) functions as either a 32-bit (EDI) or 16-bit (DI) general-purpose register.

ESI ESI is used as either ESI or SI. The source index register often addresses source

(source index) string data for the string instructions. Like EDI, ESI also functions as a general

purpose register. As a 16-bit register, it is addressed as SI; as a 32-bit register, it is
addressed as ESI.

2-1 INTERNAL MICROPROCESSOR ARCHITECTURE 35

Special-purpose Registers. The special-purpose registers include EIP, ESP, EFLAGS;j and the segment
registers CS, DS, ES, SS, FS, and GS.

EIP EIP addresses the next instruction in a section of memory defined as

(instruction pointer) segment. This register is IP (16 bits) when the microprocessor operates in the real
mode and EIP (32 bits) when the 80386 and above operate in the protected mode.
Note that the 8086, 8088, and 80286 do contain EIP, and only the 80286 and
above operate in the protected mode. The instruction pointer, which points to the
next instruction in a program, is used by the microprocessor to find the next

" sequential instruction in a program located within the code segment. The

instruction pointer can be modified with a jump or a call instruction.

ESP ESP addresses an area of memory called the stack. The stack memory stores data

(stack pointer) through this pointer and is explained later in the text with instructions that address
stack data. This register is referred to as SP if used as a 16-bit register and ESP if
referred to as a 32-bit register.

EFLAGS EFLAGS indicate the condition of the microprocessor and control its operation.
Figure 2-2 shows the flag registers of all versions of the microprocessor. Note
that the flags are upward-compatible from the 8086/8088 to the Pentium 4
microprocessor. The 8086-80286 contain a FLAG register (16 bits) and the
80386 and above contain an EFLAG register (32-bit extended flag register).

The rightmost five flag bits and the overflow flag change after many arithmetic and logic instructions exe-
cute. The flags never change for any data transfer or program control operation. Some of the flags are also used to
control features found in the microprocessor. Following is a list of each flag bit, with a brief description of their
function. As instructions are introduced in subsequent chapters, additional detail on the flag bits is provided. The
rightmost five flags and the overflow flag are changed by most arithmetic and logic operations, while data trans-
fers do not affect them.

C (carry) Carry holds the carry after addition or the borrow after subtraction. The carry flag
also indicates error conditions, as dictated by some programs and procedures.
This is especially true of the DOS function calls detailed in later chapters and
Appendix A.

P (parity) Parity is a logic O for odd parity and a logic 1 for even parity. Parity is a count of
ones in a number expressed as even or odd. For example, if a number contains
three binary one bits, it has odd parity. If a number contains zero one bits, it has
even parity. The parity flag finds little application in modern programming and -
was implemented in early Intel microprocessors for checking data in data
communications environments. Today parity checking is often accomplished by
the data communications equipment instead of the microprocessor.

FIGURE 2-2 The EFLAG 31 21 20 19 18 17 16 14 13 12 11 10 9 8 7 6 4 2 0
and FLAG register counts for o [vipfviF|achvmlrr| INT[OPIPl oD 1 | T (8] 2 A P c
the entire 80X86 and Pen-
tium microprocessor family. ~+———8086/8086/80186/80188—————
- 80286
- 80386/8986DX ———————+~
804865X
Pentium/Pentium 4 —————»

36 CHAPTER2 THE MICROPROCESSOR AND ITS ARCHITECTURE

A (auxiliary carry)

Z (zero)

S (sign)

T (trap)

I (interrupt)

D (direction)

O (overflow)

IOPL
(1/O privilege level)

NT (nested task)
RF (resume)

VM (virtual mode)

AC (alignment check)

The auxiliary carry holds the carry (half-carry) after addition or the borrow after
subtraction between bits positions 3 and 4 of the result. This highly specialized
flag bit is tested by the DAA and DAS instructions to adjust the value of AL after
a BCD addition or subtraction. Otherwise, the A flag bit is not used by the
microprocessor or any other instructions.

The zero flag shows that the result of an arithmetic or logic operation is zero. If
Z =1, the result is zero; if Z = 0, the result is not zero.

The sign flag holds the arithmetic sign of the result after an arithmetic or logic
instruction executes. If S = 1, the sign bit (leftmost bit of a number) is set or
negative; if S = 0, the sign bit is cleared or positive.

The trap flag enables trapping through an on-chip debugging feature. (A program
is debugged to find an error or bug.) If the T flag is enabled (1), the
microprocessor interrupts the flow of the program on conditions as indicated by
the debug registers and control registers. If the T flag is a logic 0, the trapping
(debugging) feature is disabled. The CodeView program can use the trap feature
and debug registers to debug faulty software.

The interrupt flag controls the operation of the INTR (interrupt request) input pin.
IfI= 1, the INTR pin is enabled; if I = 0, the INTR pin is disabled. The state of
the I flag bit is controlled by the STI (set I flag) and CLI (clear I flag)
instructions.

The direction flag selects either the increment or decrement mode for the DI
and/or SI registers during string instructions. If D = 1, the registers are
automatically decremented; if D = 0, the registers are automatically incremented.
The D flag is set with the STD (set direction) and cleared with the CLD (clear
direction) instructions.

Overflows occurs when signed numbers are added or subtracted. An overflow
indicates that the result has exceeded the capacity of the machine. For example, if
a 7FH (+127) is added—using an 8-bit addition—to a O1H (+1), the result is 80H
(~128). This result represents an overflow condition indicated by the overflow flag
for signed addition. For unsigned operations, the overflow flag is ignored.

IOPL is used in protected mode operation to select the privilege level for VO
devices. If the current privilege level is higher or more trusted than the IOPL, /O
executes without hindrance. If the IOPL is lower than the current privilege level,
an interrupt occurs, causing execution to suspend. Note that an IOPL of 00 is the
highest or most trusted; if IOPL is 11, it’s the lowest or least trusted.

The nested task flag indicates that the current task is nested within another task in
protected mode operation. This flag is set when the task is nested by software.

The resume flag is used with debugging to control the resumption of execution
after the next instruction.

The VM flag bit selects virtual mode operation in a protected mode system. A
virtual mode system allows multiple DOS memory partitions that are 1M byte in
length to coexist in the memory system. Essentially, this allows the system
program to execute multiple DOS programs.

The alignment check flag bit activates if a word or doubleword is addressed on a
non-word or non-doubleword boundary. Only the 80486SX microprocessor
contains the alignment check bit that is primarily used by its companion numeric
coprocessor, the 80487SX, for synchronization.

2-2 REAL MODE MEMORY ADDRESSING 37

VIF (virtual The VIF is a copy of the interrupt flag bit available to the Pentium-Pentium 4

interrupt flag) MiCroprocessors.

VIP (virtual VIP provides information about a virtual mode interrupt for the Pentium—

interrupt pending) Pentium 4 microprocessors. This is used in multitasking environments to provide
the operating system with virtual interrupt flags and interrupt pending
information.

ID (identification) The ID flag indicates that the Penttum—Pentium 4 microprocessors support the

CPUID instruction. The CPUID instruction provides the system with information
about the Pentium microprocessor, such as its version number and manufacturer.

Segment Registers. Additional registers, called segment registers, generate memory addresses when combined
with other registers in the microprocessor. There are either four or six segment registers in various versions of the
microprocessor. A segment register functions differently in the real mode when compared to the protected mode
operation of the microprocessor. Details on their function in real and protected mode are provided later in this
chapter. Following is a list of each segment register, along with its function in the system:

CS (code) The code segment is a section of memory that holds the code (programs and pro-
cedures) used by the microprocessor. The code segment register defines the
starting address of the section of memory holding code. In real mode operation, it
defines the start of a 64K-byte section of memory; in protected mode, it selects a
descriptor that describes the starting address and length of a section of memory
holding code. The code segment is limited to 64K bytes in the 8088-80286, and
4G bytes in the 80386 and above when these microprocessors operate in the pro-
tected mode.

DS (data) The data segment is a section of memory that contains most data used by a
program. Data are accessed in the data segment by an offset address or the
contents of other registers that hold the offset address. As with the code segment
and other segments, the length is limited to 64K bytes in the 8086—-80286, and 4G
bytes in the 80386 and above.

ES (extra) The extra segment is an additional data segment that is used by some of the string
instructions to hold destination data.

SS (stack) The stack segment defines the area of memory used for the stack. The stack entry
point is determined by the stack segment and stack pointer registers. The BP
register also addresses data within the stack segment.

FS and GS The FS and GS segments are supplemental segment registers available in the
80386, 80486, and Pentium through the Pentium 4 microprocessors to allow two
additional memory segments for access by programs.

2-2 REAL MODE MEMORY ADDRESSING

The 80286 and above operate in either the real or protected mode. Only the 8086 and 8088 operate exclusively in
the real mode. This section of the text details the operation of the microprocessor in the real mode. Real mode op-
eration allows the microprocessor to address only the first 1M byte of memory space—even if it is the Pentium 4
microprocessor. Note that the first IM byte of memory is called either the real memory or conventional memory
system. The DOS operating system requires the microprocessor to operate in the real mode. Real mode operation
allows application software written for the 8086/8088, which contain only 1M byte of memory, to function in the

38 CHAPTER2 THE MICROPROCESSOR AND ITS ARCHITEGTURE

80286 and above without changing the software. The upward compatibility of software is partially responsible for
the continuing success of the Intel family of microprocessors. In all cases, each of these microprocessors begins
operation in the real mode by default whenever power is applied or the microprocessor is reset.

Segments And Offsets

A combination of a segment address and an offset address access a memory location in the real mode. All real
mode memory addresses must consist of a segment address plus an offset address. The segment address, located
within one of the segment registers, defines the beginning address of any 64K-byte memory segment. The offset
address selects any location within the 64K byte memory segment. Segments in the real mode always have a
length of 64K bytes. Figure 2-3 shows how the segment plus offset addressing scheme selects a memory location.
This illustration shows a memory segment that begins at location 10000H and ends at location 1FFFFH—64K
bytes in length. It also shows how an offset address, sometimes called a displacement, of FOOOH selects location
1FO00H in the memory system. Note that the offset or displacement is the distance above the start of the segment,
as shown in Figure 2-3.

The segment register in Figure 2-3 contains a 1000H, yet it addresses a starting segment at location 10000H.
In the real mode, each segment register is internally appended with a OH on its rightmost end. This forms a 20-bit
memory address, allowing it to access the start of a segment. The microprocessor must generate a 20-bit memory
address to access a location within the first IM of memory. For example, when a segment register contains a
1200H, it addresses a 64K-byte memory segment beginning at location 12000H. Likewise, if a segment register con-
tains a 1201H, it addresses a memory segment beginning at location 12010H. Because of the internally appended
OH, real mode segments can begin only at a 16-byte boundary in the memory system. This 16-byte boundary is
often called a paragraph.

Because a real mode segment of memory is 64K in length, once the beginning address is known, the ending
address is found by adding FFFFH. For example, if a segment register contains 3000H, the first address of the
segment is 30000H, and the last address is 30000H + FFFFH or 3FFFFH. Table 2-1 shows several examples of
segment register contents, and the starting and ending addresses of the memory segments selected by each segment
address.

FIGURE 2-3 The real Real mode memory
mode memory-addressing FFFFF
scheme, using a segment

address plus an offset.

1FFFF

1F000 Offset = FO00

64K-byte
segment
Segment register

10000 #{1000]

00000

2-2 REAL MODE MEMORY ADDRESSING 39

TABLE 2-1 Example segment addresses.

Segment Register Starting Address Ending Address
2000H 20000H 2FFFFH
2001H 20010H 3000FH
2100H _~ 21000H 30FFFH
ABOOH ABOOOH BAFFFH
1234H 12340H 2233FH

The offset address, which is a part of the address, is added to the start of the segment to address a memory
location within the memory segment. For example, if the segment address is 1000H and the offset address is
2000H, the microprocessor addresses memory location 12000H. The offset address is always added to the starting
address of the segment to locate the data. The segment and offset address is sometimes written as 1000:2000 for a
segment address of 1000H with an offset of 2000H.

In the 80286 (with special external circuitry), and the 80386 through the Pentium 4, an extra 64K minus 16
bytes of memory is addressable when the segment address is FFFFH and the HIMEM.SYS driver is installed in the
system. This area of memory (OFFFFOH-10FFEFH) is referred to as high memory. When an address is generated
using a segment address of FFFFH, the A20 address pin is enabled (if supported) when an offset is added. For ex-
ample, if the segment address is FFFFH and the offset address is 4000H, the machine addresses memory location
FFFFOH + 4000H or 103FFOH. Notice that the A20 address line is the one in address 103FFOH. If A20 is not sup-
ported, the address is generated as 03FFOH because A20 remains a logic zero.

Some addressing modes combine more than one register and an offset value to form an offset address. When
this occurs, the sum of these values may exceed FFFFH. For example, the address accessed in a segment whose
segment address is 4000H, and whose offset address is specified as the sum of FOOOH plus 3000H, will access
memory location 42000H instead of location 52000H. When the FOOOH and 3000H are added, they form a 16-bit
(modulo 16) sum of 2000H used as the offset address; not 12000H, the true sum. Note that the carry of 1 (FOOOH
+ 3000H = 12000H) is dropped for this addition to form the offset address of 2000H. This means that the address
is generated as 4000:2000 or 42000H.

Default Segment and Offset Registers

The microprocessor has a set of rules that apply to segments whenever memory is addressed. These rules, which
apply in the real and protected mode, define the segment register and offset register combination. For example, the
code segment register is always used with the instruction pointer to address the next instruction in a program. This
combination is CS:IP or CS:EIP, depending upon the microprocessor’s mode of operation. The code segment
register defines the start of the code segment and the instruction pointer locates the next instruction within the
code segment. This combination (CS:IP or CS:EIP) locates the next instruction executed by the microprocessor.
For example, if CS = 1400H and IP/EIP = 1200H, the microprocessor fetches its next instruction from memory lo-
cation 14000H + 1200H or 15200H.

Another of the default combinations is the stack. Stack data are referenced through the stack segment at the
memory location addressed by either the stack pointer (SP/ESP) or the base pointer (BP/EBP). These combina-
tions are referred to as SS:SP (SS:ESP) or SS:BP (SS:EBP). For example, if SS = 2000H and BP = 3000H, the mi-
croprocessor addresses memory location 23000H for the stack segment memory location. Note that in real mode,
only the rightmost 16 bits of the extended register address a location within the memory segment. In the 80386—Pen-
tium 4, never place a number larger than FFFFH into an offset register if the microprocessor is operated in the real
mode. This causes the system to halt and indicate an addressing error.

Other defaults are shown in Table 2-2 for addressing memory using any Intel microprocessor with 16-bit
registers. Table 2-3 shows the defaults assumed in the 80386 and above when using 32-bit registers. Note that the
80386 and above have a far greater selection of segment/ offset address combinations than do the 8086 through the
80286 microprocessors.

40 CHAPTER 2 THE MICROPROCESSOR AND ITS ARGHITECTURE

TABLE 2-2 8086-80486 and Pentium—Pentium 4 default 16-bit seg-
* ment and offset address combinations.

: Segment . Offset Special Purpose
) cs P Instruction address
. Ss © SPorBP Stack address
e DS - BX, DI, S, an 8-bit number, Data address

N

} ». . ora16-bit number
- ES DI for string instructions String destination address

TABLE 2-3 80386 through the Pentium 4 default 32-bit segment and offset
address combinations.

Segment Offset Special Purpose
CS EIP Instruction address
SS ESP and EBP Stack address
DS EAX, EBX, ECX, EDX, ESI, EDI, an Data address
8-bit number, or a 32-bit number
ES EDI for string instructions String destination address
FS No default General address
GS No default General address

The 8086-80286 microprocessors allow four memory segments and the 80386 and above allow six memory
segments. Figure 2-4 shows a system that contains four memory segments. Note that a memory segment can touch
or even overlap if 64K bytes of memory are not required for a segment. Think of segments as windows that can be
moved over any area of memory to access data or code. Also note that a program can have more than four or six
segments, but can only access four or six segments at a time.

Suppose that an application program requires 1000H bytes of memory for its code, 190H bytes of memory
for its data, and 200H bytes of memory for its stack. This application does not require an extra segment. When this
program is placed in the memory system by DOS, it is loaded in the TPA* at the first available area of memory
above the drivers and other TPA programs. This area is indicated by a free-pointer that is maintained by DOS.
Program loading is handled automatically by the program loader located within DOS. Figure 2-5 shows how this
application is stored in the memory system. The segments show an overlap because the amount of data in them
does not require 64K bytes of memory. The side view of the segments clearly shows the overlap. It also shows how
segments can be moved over any area of memory by changing the segment starting address. Fortunately, the DOS
program loader calculates and assigns segment starting addresses. This is explained in Chapter 7, which details the
operation of the assembler, BIOS, and DOS for an assembly language program.

Segment and Offset Addressing Scheme Allows Relocation

The segment and offset addressing scheme seems unduly complicated. It is complicated, but it also affords an
advantage to the system. This complicated scheme of segment plus offset addressing allows programs to be
relocated in the memory system. It also allows programs written to function in the real mode to operate in a

* Transient processor area.

2-2 REAL MODE MEMORY ADDRESSING 41

FIGURE 2-4 A memory Memory
system showing the place- FFFFF
ment of four memory
segments. |
T~
59000
58FFF
Extra
49000 4 9 00]ES
48FFF
44000
43FFF
Stack
34000 3 4CO0|SS
33FFF
30000
2FFFF
Code
20000 2 0 00 }jCs
1FFFF
Data
10000 1 000 |DS
OFFFF
00000

protected mode system. A relocatable program is one that can be placed into any area of memory and executed
without change. Relocatable data are data that can be placed in any area of memory and used without any change
to the program. The segment and offset addressing scheme allows both programs and data to be relocated
without changing a thing in a program or data. This is ideal for use in a general-purpose computer system in
which not all machines contain the same memory areas. The personal computer memory structure is different
from machine to machine, requiring relocatable software and data.

Because memory is addressed within a segment by an offset address, the memory segment can be moved to
any place in the memory system without changing any of the offset addresses. This is accomplished by moving the
entire program, as a block, to a new area and then changing only the contents of the segment registers. If an in-
struction is 4 bytes above the start of the segment, its offset address is 4. If the entire program is moved to a new
area of memory, this offset address of 4 still points to 4 bytes above the start of the segment. Only the contents of
the segment register must be changed to address the program in the new area of memory. Without this feature, a
program would have to be extensively rewritten or altered before it is moved. This would require additional time
or many versions of a program for the many different configurations of computer systems.

42 CHAPTER2 THE MICROPROCESSOR AND ITS ARCHITECTURE

FIGURE 2-5 An application Imaginary side

program containing a code, view detailing
data, and stack segment segment overlap Memory
loaded into a DOS system FFFFF
memory.
L~ ____-/—\/
/\T e
[}
s|
t
a
[
klp
a
t
ajc 0A480
[¢] 0A47F
d Stack
L 1 |€ 0A280 0 A2 8 |SS
0A27F
Data
| | 0AOFO 0 AOF]|DS
OAOEF
Code
| | 090F0 09 0F jCS
0908F
DOS and drivers
00000

2-3 INTRODUCTION TO PROTECTED MODE MEMORY ADDRESSING

Protected mode memory addressing (80286 and above) allows access to data and programs located above the first
IM byte of memory, as well as within the first 1M byte of memory. Addressing this extended section of the
memory system requires a change to the segment plus an offset addressing scheme used with real mode memory
addressing. When data and programs are addressed in extended memory, the offset address is still used to access
information located within the memory segment. One difference is that the segment address, as discussed with real
mode memory addressing, is no longer present in the protected mode. In place of the segment address, the segment
register contains a selector that selects a descriptor from a descriptor table. The descriptor describes the memory

2-3 INTRODUGCTION TO PROTECTED MODE MEMORY ADDRESSING 43

segment’s location, length, and access rights. Because the segment register and offset address still access memory,
protected mode instructions are identical to real mode instructions. In fact, most programs written to function in
the real mode will function without change in the protected mode. The difference between modes is in the way that
the segment register is interpreted by the microprocessor to access the memory segment. Another difference, in the
80386 and above, is that the offset address can be a 32-bit number instead of a 16-bit number in the protected
mode. A 32-bit offset address allows the microprocessor to access data within a segment that can be up to 4G bytes
in length.

Selectors And Descriptors

The selector, located in the segment register, selects one of 8192 descriptors from one of two tables of descriptors.
The descriptor describes the location, length, and access rights of the segment of memory. Indirectly, the segment
register still selects a memory segment, but not directly as in the real mode. For example, in the real mode, if CS =
0008H, the code segment begins at location 00080H. In the protected mode, this segment number can address any
memory location in the entire system for the code segment, as explained shortly.

There are two descriptor tables used with the segment registers: one contains global descriptors and the other
contains local descriptors. The global descriptors contain segment definitions that apply to all programs, while the
local descriptors are usually unique to an application. You might call a global descriptor a system descriptor and
call a local descriptor an application descriptor. Each descriptor table contains 8192 descriptors, so a total of
16,384 total descriptors are available to an application at any time. Because the descriptor describes a memory seg-
ment, this allows up to 16,384 memory segments to be described for each application.

Figure 2—6 shows the format of a descriptor for the 80286 through the Pentium 4. Note that each descriptor
is 8 bytes in length, so the global and local descriptor tables are each a maximum of 64K bytes in length. Descrip-
tors for the 80286 and the 80386 through the Pentium 4 differ slightly, but the 80286 descriptor is upward-com-
patible.

The base address portion of the descriptor indicates the starting location of the memory segment. For the
80286 microprocessor, the base address is a 24-bit address, so segments begin at any location in its 16M bytes of
memory. Note that the paragraph boundary limitation is removed in these microprocessors when operated in the
protected mode. The 80386 and above use a 32-bit base address that allows segments to begin at any location in its
4G bytes of memory. Notice how the 80286 descriptor’s base address is upward-compatible to the 80386 through
the Pentium I1 descriptor because its most-significant 16 bits are 0000H. Refer to Chapters 16 and 17 for additional
detail on the 64G memory space provided by the Pentium Pro and the Pentium IL.

The segment limit contains the last offset address found in a segment. For example, if a segment begins at
memory location FOOO00H and ends at location FOOOFFH, the base address is FOOO0OH and the limit is FFH. For
the 80286 microprocessor, the base address is FOO0O0H and the limit is O0FFH. For the 80386 and above, the base
address is 0OFO0000H and the limit is 000FFH. Notice the limit the 80286 has a 16-bit limit and the 80386 through
the Pentium II have a 20-bit limit. The 80286 accesses memory segments that are between 1 and 64K bytes in

80286 descriptor 80386 through Pentium 4 descriptor
00000000 | 00000000 |6 Base (831-B24) |a|plo|S| LMt |6
7 7 V}(L19-L16)
Access rights Base (B23-B16) |4 5 Access rights Base (B23-B16) |4
3 Base (B15-B0) 2 3 Base (B15-B0) 2
] Limit (L15-L0) 0] Limit (L15—-L0) 0

FIGURE 2-6 The descriptor formats for the 80286 and 80386 through Pentium 4
MiCroprocessors.

44 CHAPTER 2 THE MICROPROCESSOR AND ITS ARCHITECTURE

length. The 80386 and above access memory segments that are between 1 and 1M byte, or 4K and 4G bytes in
length.

There is another feature found in the 80386 through the Pentium II descriptor that is not found in the 80286
descriptor: the G bit, or granularity bit. If G = 0, the limit specifies a segment limit of 00000H to FFFFFH. If G
= |, the value of the limit is multiplied by 4K bytes (appended with XXXH). The limit is then 00000XXXH to
FFFFFXXXH, if G = 1. This allows a segment length of 4K to 4G bytes in steps of 4K bytes. The reason that the
segment length is 64K bytes in the 80286 is that the offset address is always 16 bits because of its 16-bit internal
architecture. The 80386 and above use a 32-bit architecture that allows an offset address, in the protected mode op-
eration, of the 32 bits. This 32-bit offset address allows segment lengths of 4G bytes and the 16-bit offset address
allows segment lengths of 64K bytes. Operating systems operate in a 16- or 32-bit environment. For example,
DOS uses a 16-bit environment, while most Windows applications use a 32-bit environment.

Example 2-1 shows the segment start and end if the base address is 10000000H, the limit is 001FFH, and
the G bit = 0.

EXAMPLE 2-1

Base = Start = 10000000H

G =0

End = Base + Limit = 10000000H + 001FFH = 100001FFH

Example 2-2 uses the same data as Example 2-1, except that the G bit = 1. Notice that the limit is appended
with XXXH to determine the ending segment address. The XXXH can be any number between 000H and FFFH.
In the example, the XXXH is replaced with FFFH because that is the highest possible memory location within the
segment.

EXAMPLE 2-2
Base = Start = 10000000H
G =1

End = Base + Limit = 10000000H + O01FFXXXH = 101FFFFFH

The AV bit, in the 80386 and above descriptor, is used by some operating systems to indicate that the seg-
ment is available (AV = 1) or not available (AV = 0). The D bit indicates how the 80386 through the Pentium II in-
structions access register and memory data in the protected or real mode. If D = 0, the instructions are 16-bit
instructions, compatible with the 8086—-80286 microprocessors. This means that the instructions use 16-bit offset
addresses and 16-bit registers by default. This mode is often called the 16-bit instruction mode. If D = 1, the in-
structions are 32-bit instructions. By default, the 32-bit instruction mode assumes that all offset addresses and all
registers are 32 bits. Note that the default for register size and offset address size can be overridden in both the
16- and 32-bit instruction modes. Both the MSDOS and PCDOS operating systems require that the instructions
are always used in the 16-bit instruction mode. Windows 3.1 also requires that the 16-bit instruction mode is se-
lected. Note that the 32-bit instruction mode is accessible only in a protected-mode system such as Windows NT,
Windows 95, Windows 98, or OS/2. More detail on these modes and their application to the instruction set ap-
pears in Chapters 3 and 4.

The access rights byte (see Figure 2-7) controls access to the protected mode memory segment. This byte
describes how the segment functions in the system. The access rights byte allows complete control over the seg-
ment. If the segment is a data segment, the direction of growth is specified. If the segment grows beyond its limit,
the microprocessor’s program is interrupted, indicating a general protection fault. You can even specify whether a
data segment can be written or is write-protected. The code segment is also controlled in a similar fashion and can
have reading inhibited to protect software.

Descriptors are chosen from the descriptor table by the segment register. Figure 2—-8 shows how the seg-
ment register functions in the protected mode system. The segment register contains a 13-bit selector field, a
table selector bit, and a requested privilege level field. The 13-bit selector chooses one of the 8192 descriptors

2-3 INTRODUCTION TO PROTECTED MODE MEMORY ADDRESSING

0 Segment not accessed
1 Segment has been accessed

E =0 Descriptor describes a data segment
ED =0 Segment expands upward (data segment)
ED =1 Segment expands downward (stack segment)

W =0 Data may not be written
W =1 Data may be written

7 6 5 4 2 1.0
Pl DPL | S ED|RW| A
IC
L] lLA:
A=
C
R
R

E =1 Descriptor describes code segment
C =0 Ignore descriptor privilege level

=1 Abide by privilege level

=0 Code segment may not be read

=1 Code segment may be read

S = 0 System descriptor
S =1 Code or data segment descriptor

DLP = Sets the descriptor privilege level
P =0 Descriptor is undefined

P =1 Segment contains a valid base and limit

Note: Some of the letters used to describe the bits in the access rights bytes vary in Intel documentation.

FIGURE 2-7 The access rights byte for the 80286 through Pentium 4 descriptor.

15

32 10

Selector

TI} RPL

—

RPL = Requested privilege level where
00 is the highest and 11 is the lowest

Tl =0 Global descriptor table
Tl =1 Local descriptor table

Selects one descriptor from 8192 descriptors

in either the global or the local descriptor table

FIGURE 2-8 The contents of a segment register during protected mode operation of the
80286 through Pentium 4 microprocessors.

45

from the descriptor table. The TI bit selects either the global descriptor table (TI = 0) or the local descriptor table
(T1 = 1). The requested privilege level (RPL) requests the access privilege level of a memory segment. The
highest privilege level is 00 and the lowest is 11. If the requested privilege level matches or is higher in priority
than the privilege level set by the access rights byte, access is granted. For example, if the requested privilege
level is 10 and the access rights byte sets the segment privilege level at 11, access is granted because 10 is higher
in priority than privilege level 11. Privilege levels are used in multiuser environments. If the privilege level is vi-
olated, the system normally indicates a privilege violation.

Figure 2-9 shows how the segment register, containing a selector, chooses a descriptor from the global de-
scriptor table. The entry in the global descriptor table selects a segment in the memory system. In this illustration, DS

46 CHAPTER 2 THE MICROPROCESSOR AND ITS ARCHITECTURE

Memory system

FFFFFF
Global descriptor table
L’\.—/
N
100100
1000FF
00 - Data segment
00
Descriptor 1 9 2
(1) g - 100000
OFFFFF
00
DS 00
0008 FF — |
—] -
000000

FIGURE 2-9 Using the DS register to select a descriptor from the global descriptor table. In this
example, the DS register accesses memory locations 100000H-1000FFH as a data segment.

contains 0008H, which accesses the descriptor number 1 from the global descriptor table by using a requested privi-
lege level of 00. Descriptor number 1 contains a descriptor that defines the base address as 00100000H with a seg-
ment limit of 000OFFH. This means that a value of 0008H loaded into DS causes the microprocessor to use memory
locations 00100000H-001000FFH for the data segment with this example descriptor table. Note that descriptor
zero is called the null descriptor and may not be used for accessing memory.

Program-Invisible Registers

The global and local descriptor tables are found in the memory system. In order to access and specify the address
of these tables, the 80286, 80386, 80486, Pentium, Pentium Pro, and Pentium 4 contain program-invisible regis-
ters. The program-invisible registers are not directly addressed by software so they are given this name (although
some of these registers are accessed by the system software). Figure 2-10 illustrates the program-invisible regis-
ters as they appear in the 80286 through the Pentium 4. These registers control the microprocessor when operated
in the protected mode.

Each of the segment registers contains a program-invisible portion used in the protected mode. The program-
invisible portion of these registers is often called cache memory because a cache is any memory that stores infor-
mation. This cache is not to be confused with the normal level 1 or level 2 caches found with the microprocessor.

2-3 INTRODUCTION TO PROTECTED MODE MEMORY ADDRESSING 47

Segment registers Descriptor cache

Cs : Base address Limit Access

m
w

-
7]

. TR Base address Limit Access
! LDTR

Descriptor table addresses

GDTR Base address Limit o
: Program invisible

IDTR

Notes:
1. The 80286 does not contain FS and GS nor the program-invisible portions of these registers.
2. The 80286 contains a base address that is 24-bits and a limit that is 16-bits.
3. The 80386/80486/Pentium/Pentium Pro contain a base address that is 32-bits and a limit that is 20-bits.
4. The access rights are 8-bits in the 80286 and 12-bits in the 80386/80486/Pentium.

FIGURE 2-10 The program-invisible register within the 80286—~Pentium 4 microprocessors.

« The program-invisible portion of the segment register is loaded with the base address, limit, and access rights each
time the number in the segment register is changed. When a new segment number is placed in a segment register,
the microprocessor accesses a descriptor table and loads the descriptor into the program-invisible cache portion of
the segment register. It is held there and used to access the memory segment until the segment number is again
changed. This allows the microprocessor to repeatedly access a memory segment without referring to the descriptor
table for each access (hence the term cache).

The GDTR (global descriptor table register) and IDTR (interrupt descriptor table register) contain the
base address of the descriptor table and its limit. The limit of each descriptor table is 16 bits because the maximum
table length is 64K bytes. When the protected mode operation is desired, the address of the global descriptor table
and its limit are loaded into the GDTR. Before using the protected mode, the interrupt descriptor table and the
IDTR must also be initialized. More detail is provided on protected mode operation later in the text. At this point,
the programming and additional description of these registers are impossible.

The location of the local descriptor table is selected from the global descriptor table. One of the global descrip-
tors is set up to address the local descriptor table. To access the local descriptor table, the LDTR (local descriptor
table register) is loaded with a selector, just as a segment register is loaded with a selector. This selector accesses the
global descriptor table and loads the base address, limit, and access rights of the local descriptor table into the cache
portion of the LDTR.

The TR (task register) holds a selector, which accesses a descriptor that defines a task. A task is most often
a procedure or application program. The descriptor for the procedure or application program is stored in the global
descriptor table, so access can be controlled through the privilege levels. The task register allows a context or task
switch in about 17 ps. Task switching allows the microprocessor to switch between tasks in a fairly short amount
of time. The task switch allows multitasking systems to switch from one task to another in a simple and orderly
fashion.

48 CHAPTER2 THE MICROPROCESSOR AND ITS ARCHITECTURE

2-4 MEMORY PAGING

The memory paging mechanism located within the 80386 and above allows any physical memory location to be as-
signed to any linear address. The linear address is defined as the address generated by a program. With the memory
paging unit, the linear address is invisibly translated into any physical address, which allows an application written
to function at a specific address to be relocated through the paging mechanism. It also allows memory to be placed
into areas where no memory exists. An example is the upper memory blocks provided by EMM386.EXE.

The EMM386.EXE program reassigns extended memory, in 4K blocks, to the system memory between the
video BIOS and the system BIOS ROMS for upper memory blocks. Without the paging mechanism, the use of this
area of memory is impossible.

Paging Registers

The paging unit is controlled by the contents of the microprocessor’s control registers. See Fig-
ure 2—11 for the contents of control registers CRO through CR3. Note that these registers are only available to the 80386
through the Pentium microprocessors. Beginning with the Pentium, an additional control register labeled CR4 controls
extensions to the basic architecture provided in the Pentium and above microprocessors. One of these features is a 4M-
byte page that is enabled by setting bit position 4, or CR4. Refer to Chapters 16 and 17 for additional details on 4M-byte
memory paging.

The registers important to the paging unit are CRO and CR3. The leftmost bit (PG) position of CRO selects
paging when placed at a logic 1 level. If the PG bit is cleared (0), the linear address generated by the program be-
comes the physical address used to access memory. If the PG bit is set (1), the linear address is converted to a
physical address through the paging mechanism. The paging mechanism functions in both the real and protected
modes.

CR3 contains the page directory base address, and the PCD and PWT bits. The PCD and PWT bits control the
operation of the PCD and PWT pins on the microprocessor. If PCD is set (1), the PCD pin becomes a logic one during
bus cycles that are not pages. This allows the external hardware to control the level 2 cache memory. (Note that the

31
12

- =)
M PID|T|P}V
cl lslels|vim] CR4 Pentium, Pentium Pro,
El |E Dl |E Pentium li, Pentium {ll,
and Pentium 4 only
plp
Page directory base address g ¥V CR3
Page fault linear address CR2
Reserved CR1
PICIN Al |w N|E|T|E[M|P
GlD[W M P elt|s|m|ele| cro

o) ©
-~ -~

FIGURE 2-11 The control register structure of the microprocessor.

2-4 MEMORY PAGING 49

level 2 cache memory is an external high-speed memory that functions as a buffer between the microprocessor and
the main DRAM memory system.) The PWT bit also appears on the PWT pin, during bus cycles that are not pages,
to control the write-through cache in the system. The page directory base address locates the page directory for the
page translation unit. Note that this address locates the page directory at any 4K boundary in the memory system be-
cause it is appended internally with a 000H. The page directory contains 1024 directory entries of 4 bytes each. Each
page directory entry addresses a page table that contains 1024 entries.

The linear address, as it is generated by the software, is broken into three sections that are used to access the
page directory entry, page table entry, and page offset address. Figure 2-12 shows the linear address and its
makeup for paging. Notice how the leftmost 10 bits address an entry in the page directory. For linear address
(00000000H-003FFFFFH, the first entry of the page directory is accessed. Each page directory entry represents or
repages a 4M-byte section of the memory system. The contents of the page directory select a page table that is in-
dexed by the next 10 bits of the linear address (bit positions 12-21). This means that address 00000000H-
00000FFFH selects page directory entry O and page table entry 0. Notice this is a 4K-byte address range.
The offset part of the linear address (bit positions 0-11) next selects a byte in the 4K-byte memory page. In
Figure 2-12, if the page table 0 entry contains address 00100000H, then the physical address is
00100000H-00100FFFH for linear address 00000000H-00000FFFH. This means that when the program accesses a
location between 00000000H and 00000FFFH, the microprocessor physically addresses location
00100000H-00100FFFH.

Because the act of repaging a 4K-byte section of memory requires access to the page directory and a page
table, which are both located in memory, Intel has incorporated a cache called the TLB (translation look-aside
buffer). In the 80486 microprocessor, the cache holds the 32 most recent page translation addresses. This means
that the last 32 page table translations are stored in the TLB, so if the same area of memory is accessed, the address
is already present in the TLB, and access to the page directory and page tables is not required. This speeds program
execution. If a translation is not in the TLB, the page directory and page table must be accessed, which requires

& 8 S 0
Directory Page table Offset
(a)
s & 6543210
D|AIP|P|UIW|P
Address ciw
DIT
L — = Present
——— Writable
User defined
Write-through
————— Cache disable
= Acc d
(b) — Dirty (0 in page directory)

FIGURE 2-12 The format for the linear address (a) and a page directory or page table entry (b).

50 CHAPTER2 THE MICROPROCESSOR AND ITS ARCHITECTURE

additional execution time. The Pentium, Pentium Pro, Pentium II, Pentium III, and Pentium 4 contain separate
TLBs for each of their instruction and data caches.

The Page Directory and Page Table

Figure 2—13 shows the page directory, a few page tables, and some memory pages. There is only one page direc-
tory in the system. The page directory contains 1024 doubleword addresses that locate up to 1024 page tables. The
page directory and each page table are 4K bytes in length. If the entire 4G byte of memory is paged, the system
must allocate 4K bytes of memory for the page directory, and 4K times 1024 or 4M bytes for the 1024 page tables.
This represents a considerable investment in memory resources.

The DOS system and EMM386.EXE use page tables to redefine the area of memory between locations
C8000H-EFFFFH as upper memory blocks. It does this by repaging extended memory to back-fill this part of the
conventional memory system to allow DOS access to additional memory. Suppose that the EMM386.EXE pro-
gram allows access to 16M bytes of extended and conventional memory through paging and locations
C8000H—EFFFFH must be repaged to locations 110000—138000H, with all other areas of memory paged to their
normal locations. Such a scheme is depicted in Figure 2-14.

Here, the page directory contains four entries. Recall that each entry in the page directory corresponds to 4M
bytes of physical memory. The system also contains four page tables with 1024 entries each. Recall that each entry
in the page table repages 4K bytes of physical memory. This scheme requires a total of 16K of memory for the four
page tables and 16 bytes of memory for the page directory.

As with DOS, the Windows program also repages the memory system. At present, Windows version 3.11 sup-
ports paging for only 16M bytes of memory because of the amount of memory required to store the page tables. On

Memory pages

Dir Page Offset

Page tables

]

—

Page directory

CR3 o

l Base "’(E" 0

FIGURE 2-13 The paging mechanism in the 80386 through Pentium 4 microprocessors.

